到目前为止,你可能已经对我们一直在研究的一维瞬态扩散偏微分方程感到厌倦了

不要误解:我们还没有结束对这个东西的研究;但为了变化,让我们引入一个全新的方程,以及一个非常酷的量,叫做拉普拉斯算子,尽管它不是严格的变量分离概念。你会喜欢这一章的;里面有很多漂亮的图片。

的图形。
拉普拉斯算子是欧几里得 n 维空间中的一个线性算子。还有其他空间,它们的性质与欧几里得空间不同。还要注意,这里的“算子”有非常特定的含义。就像函数是对实数的一种操作一样,我们的算子是对函数的操作,而不是对实数的操作。请参阅 这里以获得更长的解释。
我们从 3D 笛卡尔“版本”开始。设
。函数
的拉普拉斯算子定义并表示为

因此,该算子确实是取
相对于笛卡尔空间变量
的非混合二阶导数之和。“del 平方”表示法更受欢迎,因为大写的 delta 会与增量和差值混淆,而
太长,而且不涉及漂亮的数学符号。拉普拉斯算子也称为拉普拉斯算符或拉普拉斯算符,不要与拉普拉斯变换混淆。此外,请注意,如果我们只取函数
的一阶偏导数,并将它们放入向量中,那么它就是函数
的梯度。拉普拉斯算子取二阶非混合导数并将其加起来。
在一维情况下,回想一下二阶导数衡量的是凹凸性。假设
;如果
为正,则
凹向上,如果
为负,则
凹向下,参见下面曲线上的各种点处的向上或向下箭头。拉普拉斯算子可以看作是凹凸性概念对多元函数的推广。
这个想法在右边的图中,在一维情况下进行了演示:
。在
左侧,拉普拉斯算子(这里只是二阶导数)为负,图形凹向下。在
处,曲线发生拐点,拉普拉斯算子为
。在
右侧,拉普拉斯算子为正,图形凹向上。
凹凸性可能对您有用,也可能没用。值得庆幸的是,拉普拉斯算子还有另一个非常重要的视角,对它出现在任何方程中的情况都有深远的意义:拉普拉斯算子将空间中某个点的
的值与其在该点邻域中的
的值的平均值进行了比较。三种情况如下:
- 如果
在某个点上大于其相邻点的平均值,则
。
- 如果
在某个点上等于其相邻点的平均值,则
。
- 如果某一点的
小于其相邻点的平均值,则
。
因此,拉普拉斯算子可以被认为是在某一点 

该点的邻域为
。
某一点的邻域定义为该点欧氏距离 δ(delta)内的开集。参考右侧图片(3D 示例),点
的邻域是阴影区域,满足

注意,我们的一维瞬态扩散方程,我们的平行板流动,涉及拉普拉斯算子

带着这种心态,让我们检查一下这个非常重要的 PDE 的行为。左边是时间导数,右边是拉普拉斯算子。这个方程表明
- 某一点的
的变化率与该点附近
的平均值与该点
的值之差成正比。
例如,如果在某个位置存在一个“热点”,其中
平均值大于其邻居,则拉普拉斯算子将为负,因此时间导数将为负,这将导致
在该位置下降,“冷却”下来。 如下图所示。 箭头反映了拉普拉斯算子的幅度,并且由于时间导数,曲线将移动的方向。
瞬态扩散的可视化。
值得注意的是,在 3D 中,此方程式完全描述了均匀固体中热量的流动,该固体不会产生自身的热量(例如,过多的电流通过细线会导致)。
拉普拉斯方程描述了一种稳态条件,它看起来像这样

此方程的解称为调和函数。 以下是一些需要注意的事项
- 时间不存在。 此方程描述了一种稳态条件。
- 时间的缺失意味着初始条件的缺失,因此我们将处理边界值问题,而不是初始边界值问题。
- 在一维中,这是穿过边界在其指定值的直线的常微分方程。
- 所有在某个域中满足此方程的函数在该域中都是解析的(非正式地,解析函数等于其泰勒展开式)。
- 尽管表面上看起来如此,但拉普拉斯方程的解通常不是最小曲面。
- 拉普拉斯方程是线性的。
拉普拉斯方程在笛卡尔(以及几乎任何其他)坐标系中是可分离的。 因此,如果边界条件不太复杂,我们应该不会在求解它时遇到太多问题。
方形上的稳态条件。
想象一个 1 x 1 的方形板,它在顶部和底部被绝缘,并且在其未绝缘的边缘施加了恒定温度,如右图所示。 热量仅通过边缘稳定地流入和流出此物体,并且由于它很“薄”和“绝缘”,因此温度可以表示为
。 这是我们第一次涉足两个空间坐标,请注意时间的缺失。
让我们参照图片制定一个边界值问题


因此,我们有一个非齐次边界条件。 假设 






与之前一样,将分离常数称为
而不是
(或其他)碰巧使问题更容易解决。注意,对于
方程保留了负号:同样,这些选择碰巧使事情变得更简单。求解每个方程并将它们组合回 





在边 D





注意常数可以合并,但我们不会这样做,以便在稍后强调一个要点。在边 A 上


取
为
将满足此特定的边界条件,但这将导致平面解
,它无法满足边 C 上的温度。这就是为什么在几步之前没有合并常数的原因,以便很明显
可能不等于
。因此,我们取而代之的是
来满足上述条件,然后将三个常数合并成一个,称为 



现在看看边 B


现在应该不言而喻,
不能为零,因为这将导致
,这无法满足非零边界条件。相反,我们可以取 

目前,这个解将满足 4 个边界条件中的 3 个。剩下的就是边缘 C,即非齐次边界条件。


既不是
也不
可以被扭曲以适应这个边界条件。
由于拉普拉斯方程是线性的,PDE 解的线性组合也是 PDE 的解。还要注意的一点是:由于边界条件(迄今为止)是齐次的,因此我们可以添加解,而不用担心非零边界累加。
虽然
如上所示将无法解决这个问题,我们可以尝试对(基于
)解进行求和,以形成一个线性组合,该线性组合可能作为整体解决 BVP。




假设这种形式是正确的(回顾 平行板流动:真实 IC 的动机),让我们再次尝试应用最后一个边界条件


看起来它需要傅里叶级数方法。通过正交性找到
应该可以解决这个问题




该级数解的 25 项部分和。


在最后一步被更改为
。 此外,对于整数
,
。 注意,已经进行了傅里叶正弦展开。 现在可以组装 BVP 的解。


解决了!
现在终于可以提一下边界条件在点
和
处是不连续的。因此,级数在这些点收敛缓慢。从右侧的图中可以看出,它是一个 25 项部分和(注意,其中一半的项为
),除了在
处,尤其是在不连续点
和
附近看起来很完美。
现在,我们将在圆形边界上指定
的值。圆可以用笛卡尔坐标表示,但这样会导致非线性边界条件,从而使该方法失效。相反,应该使用极坐标
,因为在这个系统中圆的方程非常简单。为了实现这一点,需要拉普拉斯算子的极坐标表示。暂不详细介绍,拉普拉斯算子在 (2D) 极坐标中给出

这个结果可以通过微分和链式法则得到,并不难,但有点长。在这些坐标中,拉普拉斯方程写成

请注意,从笛卡尔坐标到极坐标的转换付出了代价:尽管仍然是线性的,但拉普拉斯方程现在具有可变系数。这意味着分离后,至少一个ODE也将具有可变系数。
让我们构建以下 BVP,令 



这可以代表一个类似于先前问题的物理问题:用圆盘代替方形板。请注意,在获取唯一解时,明显缺少足够的边界条件。看起来奇怪的关于 u 在感兴趣的域内有界的说法实际上是获得唯一解的关键,并且它经常在极坐标系中表现出来。它弥补了边界条件的“不足”。为了分离,我们像往常一样错误地假设







再次,负号和分离常数的排列方式使得后面的解更容易。这些决定主要通过反复试验得出。
方程可能是一个你从未见过的方程,它是 **欧拉微分方程** 的一个特例(不要与欧拉-拉格朗日微分方程混淆)。解决它有几种方法,最通用的方法是改变变量,以便得到一个具有常系数的方程。一种更简单的方法是注意系数顺序和导数顺序的规律,并由此推测一个幂解。无论哪种方式,这个欧拉微分方程简单情况的通解给出如下

这是一个非常好的例子,因为它表明偏微分方程问题往往会变成难以理解的常微分方程问题;我们这次很幸运,因为
的解相当简单,尽管它的常微分方程初看起来很糟糕。
方程的解是

结合


现在,这里就可以调用英文语句条件,即 u 必须在感兴趣的域中是有界的。当
时,包含
的项是无界的。修正这个问题的 **唯一** 方式是取
。注意,如果这个问题是在两个同心圆之间求解,这一项将不为零,非常重要。去掉这一项后,常数可以合并

只剩下一个条件:
在
上,但有 3 个常数。让我们先假设

那么,只需将系数相等就可以得到

现在,让我们使频率不同

将系数相等行不通。但是,如果将初始条件分解成各个项,各个项的解之和恰好可以解决整个边值问题。



验证上述解在
处是否真的等于边界条件。

由于拉普拉斯方程是线性的,因此这必须也解决偏微分方程。所有这些意味着,如果某个通用函数
可以表示为具有角频率的正弦波之和
,所需的就是适当的和的线性组合。表示为

为了确定系数,代入边界条件


系数
和
可以通过对
进行(完整)傅里叶展开来确定。请注意,这意味着
必须具有周期
,因为我们在一个域(特别是圆)中求解它,其中
。
你可能不喜欢无限级数解。好吧,事实证明,通过各种操作,可以将此特定问题的完整解表示为

这被称为泊松积分公式。
虽然不一定是偏微分方程的概念,但对于任何学习这种数学的人来说,熟悉从一个坐标系到另一个坐标系的转换非常重要。以下是使用多元链式法则和微分概念在二维极坐标下推导拉普拉斯算子的过程。但是,要知道,实际上有很多方法可以做到这一点。
我们只需要三个定义就可以开始



如果已知
,则可以使用链式法则将导数表示为
和
。为了得到二阶导数,需要进行两次应用。将算子当作它们本身具有意义一样进行操作

将其应用于自身,将下划线部分视为依赖于
和
的一个单元



上述混乱可以通过操纵那些奇怪的导数来简化。




如果对一些导数的写法进行一些更改,可能会使它更容易处理。此外,
变量也类似地进行。


现在我们需要得到上面一些导数的表达式。最直接的途径是使用微分的概念。如果

那么

通过代入法求解
和
给出

如果
,则全微分为

注意,上面两个方程都是这种形式(回忆
和
,就像上面的
),这意味着

将系数相等可快速得到一组导数

有一种更简单但更抽象的方法可以得到上面的导数,这种方法可能有点过度,但值得一提。函数
和
的雅可比矩阵为

需要注意的是,雅可比矩阵是全导数系数的紧凑表示;以
为例(粗体表示向量)

因此,我们可以通过对雅可比矩阵求逆来得到我们感兴趣的导数




虽然这个公式看起来有点复杂,但它非常方便,只是雅可比矩阵众多用途中的一个。从中可以获得一个有趣的见解:除非雅可比矩阵在除孤立点外的所有地方都可逆,否则坐标变换毫无意义。换句话说,雅可比矩阵的行列式必须非零,否则坐标变换不是一对一的(注意,在这个例子中,当
时,行列式将为零。这样的孤立点并不成问题)。
无论你选择哪种方法,现在应该有足够的信息来计算笛卡尔二阶导数。我们以
为例进行说明。


类似地,对于 



现在,将这些辛辛苦苦手工制作的微分算子加起来,看看结果如何简化为只有 3 个非三角函数项。






真是太麻烦了。为了省事,以下是另外两个常用的坐标系中的拉普拉斯算子:
柱坐标系:

球坐标:

已尽可能地合并导数(之前未完成)。
这是一章冗长且复杂的章节。应该清楚的是,推导出的解只适用于非常简单的几何形状,其他几何形状可以通过**共形映射**来处理。
拉普拉斯算子(及其变体)是一个非常重要的量,它的行为值得你像了解自己的手掌一样了解它。以下是一些涉及拉普拉斯算子的重要方程的示例:
- 纳维-斯托克斯方程。
- 扩散方程。
- 拉普拉斯方程。
- 泊松方程。
- 亥姆霍兹方程。
- 薛定谔方程。
- 波动方程。
还有几个与拉普拉斯算子类似的算子(尽管不如拉普拉斯算子重要),值得一提。

双调和方程在线性弹性理论中很有用,例如,它可以描述“蠕变”流体流动


波动方程可以用达朗贝尔算子来表示

尽管用拉普拉斯算子表示更流行。
