两个重要的极限
lim x → ∞ ( x k e − x ) → 0 {\displaystyle \lim _{x\rightarrow \infty }\left(x^{k}e^{-x}\right)\rightarrow 0} 对于任何实数 k
lim x → 0 ( x k ln x ) → 0 {\displaystyle \lim _{x\rightarrow 0}\left(x^{k}\ln {x}\right)\rightarrow 0} 对于所有 k > 0
( r = 0 , 1 , 2 , ⋯ ) {\displaystyle (r=0,1,2,\cdots )}
e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + ⋯ + x r r ! + ⋯ {\displaystyle e^{x}=1+x+{x^{2} \over 2!}+{x^{3} \over 3!}+{x^{4} \over 4!}+\cdots +{x^{r} \over r!}+\cdots }
sin x = x − x 3 3 ! + x 5 5 ! − ⋯ + ( − 1 ) r x 2 r + 1 ( 2 r + 1 ) ! + ⋯ {\displaystyle \sin x=x-{x^{3} \over 3!}+{x^{5} \over 5!}-\cdots +\left(-1\right)^{r}{x^{2r+1} \over (2r+1)!}+\cdots }
cos x = 1 − x 2 2 ! + x 4 4 ! − ⋯ + ( − 1 ) r + 1 x 2 r ( 2 r ) ! + ⋯ {\displaystyle \cos x=1-{x^{2} \over 2!}+{x^{4} \over 4!}-\cdots +\left(-1\right)^{r+1}{x^{2r} \over (2r)!}+\cdots }
( 1 + x ) n = 1 + n x + n ( n − 1 ) 2 ! x 2 + ⋯ + ( n r ) x r + ⋯ {\displaystyle (1+x)^{n}=1+nx+{n(n-1) \over 2!}x^{2}+\cdots +\;{\ n \choose r}\;x^{r}+\cdots }
( r = 1 , 2 , 3 , ⋯ ) {\displaystyle (r=1,2,3,\cdots )}
ln ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) r + 1 x r r + ⋯ {\displaystyle \ln(1+x)=x-{x^{2} \over 2}+{x^{3} \over 3}-\cdots +(-1)^{r+1}{x^{r} \over r}+\cdots }
如果积分 : ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx\,} 满足以下情况,则称为广义积分:
x = r cos θ , {\displaystyle x=r\cos \theta ,\,}
y = r sin θ , {\displaystyle y=r\sin \theta ,\,}
r 2 = x 2 + y 2 , {\displaystyle r^{2}=x^{2}+y^{2},\,}
tan θ = y x {\displaystyle \tan \theta ={y \over x}}
对于曲线 r = f ( θ ) , {\displaystyle r=f(\theta ),\,} α ≤ θ ≤ β . {\displaystyle \alpha \leq \theta \leq \beta .\,}
A = ∫ α β 1 2 r 2 d θ {\displaystyle A=\int _{\alpha }^{\beta }{1 \over 2}r^{2}d\theta \,}
r 必须在区间 α ≤ θ ≤ β . {\displaystyle \alpha \leq \theta \leq \beta .\,} 内定义且非负。
y r + 1 = y r + h f ( x r , y r ) {\displaystyle y_{r+1}=y_{r}+hf(x_{r},y_{r})\,}
y r + 1 = y r − 1 + 2 h f ( x r , y r ) {\displaystyle y_{r+1}=y_{r-1}+2hf(x_{r},y_{r})\,}
y r + 1 = y r + 1 2 ( k 1 + k 2 ) {\displaystyle y_{r+1}=y_{r}+{1 \over 2}(k_{1}+k_{2})\,}
其中
k 1 = h f ( x r , y r ) {\displaystyle k_{1}=hf(x_{r},y_{r})\,}
以及
k 2 = h f ( x r + h , y r + k 1 ) . {\displaystyle k_{2}=hf(x_{r}+h,y_{r}+k_{1}).\,}
AQA 的免费教科书 [1]