需求函数 x ( p , w ) {\displaystyle x(p,w)} 满足揭示偏好弱公理,如果 ∀ ( p , w ) , ( p ′ , w ′ ) if p x ( p ′ , w ′ ) ≤ w and x ( p ′ , w ′ ) ≠ x ( p , w ) then p ′ x ( p , w ) > w ′ {\displaystyle \forall (p,w),(p^{\prime },w^{\prime }){\mbox{ if }}px(p^{\prime },w^{\prime })\leq w{\mbox{ and }}x(p^{\prime },w^{\prime })\neq x({p},{w}){\mbox{ then }}p^{\prime }x({p},{w})>w^{\prime }}
换句话说消费者面对 ( p , w ) {\displaystyle (p,w)} 可以选择 $\funcd{x}{p^{\prime},w^{\prime}}$,但选择了 x ( p , w ) {\displaystyle x(p,w)} ,假设消费者选择一致,如果 $\funcd{x}{p^{\prime},\primd{w}}$ 被选择, x ( p , w ) {\displaystyle x(p,w)} 必须是不可负担的。因此, p ′ ⋅ x ( p , w ) > w ′ {\displaystyle p^{\prime }\cdot x(p,w)>w^{\prime }}