跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移至侧边栏
隐藏
开始
1
二阶微分方程
2
求解二阶微分方程
切换求解二阶微分方程小节
2.1
情况一
2.2
情况二
2.3
情况三
切换目录
算术课程/微分方程/二阶方程
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移至侧边栏
隐藏
来自维基教科书,开放世界中的开放书籍
<
算术课程
|
微分方程
二阶微分方程
[
编辑
|
编辑源代码
]
二阶微分方程的一般形式为
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
可以表示为
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
求解二阶微分方程
[
编辑
|
编辑源代码
]
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
s
2
+
B
A
s
+
C
A
=
0
{\displaystyle s^{2}+{\frac {B}{A}}s+{\frac {C}{A}}=0}
s
=
(
−
α
±
α
2
−
β
2
)
x
{\displaystyle s=(-\alpha \pm {\sqrt {\alpha ^{2}-\beta ^{2}}})x}
s
=
(
−
α
±
λ
)
x
{\displaystyle s=(-\alpha \pm \lambda )x}
情况一
[
编辑
|
编辑源代码
]
λ
=
0
{\displaystyle \lambda =0}
α
2
=
λ
2
{\displaystyle \alpha ^{2}=\lambda ^{2}}
s
=
−
α
x
{\displaystyle s=-\alpha x}
f
(
x
)
=
e
(
−
α
x
)
{\displaystyle f(x)=e^{(}-\alpha x)}
情况二
[
编辑
|
编辑源代码
]
λ
>
0
{\displaystyle \lambda >0}
α
2
>
λ
2
{\displaystyle \alpha ^{2}>\lambda ^{2}}
s
=
−
α
x
±
λ
x
{\displaystyle s=-\alpha x\pm \lambda x}
f
(
x
)
=
e
(
α
x
)
[
e
(
−
α
x
)
+
e
(
−
α
x
)
]
{\displaystyle f(x)=e^{(}\alpha x)[e^{(}-\alpha x)+e^{(}-\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
C
o
s
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Cos\lambda x}
A
=
1
2
e
(
α
x
)
{\displaystyle A={\frac {1}{2}}e^{(}\alpha x)}
情况 3
[
编辑
|
编辑源代码
]
λ
<
0
{\displaystyle \lambda <0}
α
2
<
λ
2
{\displaystyle \alpha ^{2}<\lambda ^{2}}
s
=
−
α
x
±
j
λ
x
{\displaystyle s=-\alpha x\pm j\lambda x}
f
(
x
)
=
e
(
−
α
x
)
[
e
(
α
x
)
+
e
(
−
j
α
x
)
]
{\displaystyle f(x)=e^{(}-\alpha x)[e^{(}\alpha x)+e^{(}-j\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
S
i
n
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Sin\lambda x}
A
=
1
2
j
e
(
α
x
)
{\displaystyle A={\frac {1}{2j}}e^{(}\alpha x)}
分类
:
书籍: 算术课程
华夏公益教科书