跳到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
指数增长
2
证明
切换目录
算术课程/非线性函数/指数函数/指数增长
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
算术课程
|
非线性函数
指数增长
[
编辑
|
编辑源代码
]
指数增长函数是一个以指数方式增长的函数
N
(
t
)
=
N
0
e
λ
t
.
{\displaystyle N(t)=N_{0}e^{\lambda t}.\,}
可以证明它是一个具有以下形式的微分方程的根
d
N
d
t
=
λ
N
.
{\displaystyle {\frac {dN}{dt}}=\lambda N.}
证明
[
编辑
|
编辑源代码
]
对于以下形式的微分方程
d
N
d
t
=
λ
N
.
{\displaystyle {\frac {dN}{dt}}=\lambda N.}
∫
d
N
N
=
λ
∫
d
t
{\displaystyle \int {\frac {dN}{N}}=\lambda \int dt}
l
n
N
=
λ
t
+
c
{\displaystyle lnN=\lambda t+c}
N
=
e
(
λ
t
+
c
)
{\displaystyle N=e^{(}\lambda t+c)}
N
(
t
)
=
N
0
e
λ
t
.
{\displaystyle N(t)=N_{0}e^{\lambda t}.\,}
类别
:
书籍:算术课程
华夏公益教科书