定义 24.1 (有限生成代数) :
令     R      {\displaystyle R}         R      {\displaystyle R}         A      {\displaystyle A}          a   1      ,  …  ,   a   n      ∈  A      {\displaystyle a_{1},\ldots ,a_{n}\in A}         R  [   a   1      ,  …  ,   a   n      ]      {\displaystyle R[a_{1},\ldots ,a_{n}]}         A      {\displaystyle A}         A  =  R  [   a   1      ,  …  ,   a   n      ]      {\displaystyle A=R[a_{1},\ldots ,a_{n}]}     
 
    A      {\displaystyle A}         R      {\displaystyle R}         A      {\displaystyle A}         p  (   a   1      ,  …  ,   a   n      )      {\displaystyle p(a_{1},\ldots ,a_{n})}         p  ∈  R  [   x   1      ,  …  ,   x   n      ]      {\displaystyle p\in R[x_{1},\ldots ,x_{n}]}     
引理 24.2 (阿廷-泰特) :
设     R  ⊆  S  ⊆  T      {\displaystyle R\subseteq S\subseteq T}         R      {\displaystyle R}         T      {\displaystyle T}         S      {\displaystyle S}         R      {\displaystyle R}         S      {\displaystyle S}         R      {\displaystyle R}     
证明 :
由于     T      {\displaystyle T}         S      {\displaystyle S}          u   1      ,  …  ,   u   n      ∈  T      {\displaystyle u_{1},\ldots ,u_{n}\in T}         T  =  ⟨   u   1      ,  …  ,   u   n      ⟩      {\displaystyle T=\langle u_{1},\ldots ,u_{n}\rangle }         S      {\displaystyle S}         T      {\displaystyle T}         R      {\displaystyle R}          v   1      ,  …  ,   v   m      ∈  T      {\displaystyle v_{1},\ldots ,v_{m}\in T}         T      {\displaystyle T}         R  [   v   1      ,  …  ,   v   n      ]      {\displaystyle R[v_{1},\ldots ,v_{n}]}          u   1      ,  …  ,   u   n          {\displaystyle u_{1},\ldots ,u_{n}}          a   i  ,  j      ∈  S      {\displaystyle a_{i,j}\in S}         i      {\displaystyle i}         {  1  ,  …  ,  n  }      {\displaystyle \{1,\ldots ,n\}}         j      {\displaystyle j}         {  1  ,  …  ,  m  }      {\displaystyle \{1,\ldots ,m\}}     
     v   j      =   a   1  ,  j       u   1      +  ⋯  +   a   n  ,  j       u   n          {\displaystyle v_{j}=a_{1,j}u_{1}+\cdots +a_{n,j}u_{n}}         j  ∈  {  1  ,  …  ,  m  }                       (  ∗  )      {\displaystyle j\in \{1,\ldots ,m\}~~~~~~~(*)}     此外,存在合适的      b   i  ,  j  ,  k          {\displaystyle b_{i,j,k}}         i  ,  j  ,  k  ∈  {  1  ,  …  ,  n  }      {\displaystyle i,j,k\in \{1,\ldots ,n\}}     
     u   j       u   k      =   b   1  ,  j  ,  k       u   1      +  ⋯  +   b   n  ,  j  ,  k       u   n                           (  ∗  ∗  )      {\displaystyle u_{j}u_{k}=b_{1,j,k}u_{1}+\cdots +b_{n,j,k}u_{n}~~~~~~~(**)}     我们定义      S  ′    :=  R  [   a   i  ,  j      (  1  ≤  i  ≤  n  ,  1  ≤  j  ≤  m  )  ,   b   i  ,  j  ,  k      (  1  ≤  i  ,  j  ,  k  ≤  n  )  ]  ⊆  T      {\displaystyle S':=R[a_{i,j}(1\leq i\leq n,1\leq j\leq m),b_{i,j,k}(1\leq i,j,k\leq n)]\subseteq T}          S  ′        {\displaystyle S'}          a   i  ,  j      ,   b   i  ,  j  ,  k          {\displaystyle a_{i,j},b_{i,j,k}}         T      {\displaystyle T}          S  ′        {\displaystyle S'}         T      {\displaystyle T}          S  ′    ⊆  S      {\displaystyle S'\subseteq S}         R  ⊆   S  ′        {\displaystyle R\subseteq S'}         R      {\displaystyle R}          S  ′        {\displaystyle S'}     
我们断言     T      {\displaystyle T}          S  ′        {\displaystyle S'}         t  ∈  T      {\displaystyle t\in T}          v   1      ,  …  ,   v   m          {\displaystyle v_{1},\ldots ,v_{m}}         (  ∗  )      {\displaystyle (*)}         (  ∗  ∗  )      {\displaystyle (**)}          u   1      ,  …  ,   u   n          {\displaystyle u_{1},\ldots ,u_{n}}          S  ′        {\displaystyle S'}         T      {\displaystyle T}          S  ′        {\displaystyle S'}         T      {\displaystyle T}          S  ′        {\displaystyle S'}     
因此,    S      {\displaystyle S}          S  ′        {\displaystyle S'}         T      {\displaystyle T}         S      {\displaystyle S}         R      {\displaystyle R}          m   1      ,  …  ,   m   l      ∈  S      {\displaystyle m_{1},\ldots ,m_{l}\in S}          S  ′        {\displaystyle S'}         S      {\displaystyle S}         s  ∈  S      {\displaystyle s\in S}     
    s  =   c   1       m   1      +  ⋯  +   c   l       m   l          {\displaystyle s=c_{1}m_{1}+\cdots +c_{l}m_{l}}          c   1      ,  …  ,   c   l      ∈   S  ′        {\displaystyle c_{1},\ldots ,c_{l}\in S'}     每个      c   i          {\displaystyle c_{i}}          S  ′        {\displaystyle S'}          a   i  ,  j      ,   b   i  ,  j  ,  k          {\displaystyle a_{i,j},b_{i,j,k}}         R      {\displaystyle R}         s      {\displaystyle s}          a   i  ,  j      ,   b   i  ,  j  ,  k      ,   m   i          {\displaystyle a_{i,j},b_{i,j,k},m_{i}}         R      {\displaystyle R}         ◻      {\displaystyle \Box }     
证明 1 (Azarang 2015) :
事实 1. 如果域     F      {\displaystyle F}         D      {\displaystyle D}         D      {\displaystyle D}     
事实 2. 如果     D      {\displaystyle D}         D      {\displaystyle D}     
Proof of the Lemma: We use induction on     n      {\displaystyle n}         K      {\displaystyle K}         L      {\displaystyle L}         n  =  1      {\displaystyle n=1}         n  >  1      {\displaystyle n>1}         n      {\displaystyle n}         n      {\displaystyle n}          α   i          {\displaystyle \alpha _{i}}          α   1          {\displaystyle \alpha _{1}}         K      {\displaystyle K}         K  [   α   1      ,  …  ,   α   n      ]  =  K  (   α   1      )  [   α   2      ,  …  ,   α   n      ]      {\displaystyle K[\alpha _{1},\ldots ,\alpha _{n}]=K(\alpha _{1})[\alpha _{2},\ldots ,\alpha _{n}]}          α   2      ,  …  ,   α   n          {\displaystyle \alpha _{2},\ldots ,\alpha _{n}}         K  (   α   1      )      {\displaystyle K(\alpha _{1})}          f   2      (   α   1      )  ,  …  ,   f   n      (   α   1      )  ∈  K  [   α   1      ]      {\displaystyle f_{2}(\alpha _{1}),\ldots ,f_{n}(\alpha _{1})\in K[\alpha _{1}]}          α   i          {\displaystyle \alpha _{i}}         A  =  K  [   α   1      ]  [  1   /     f   2      (   α   1      )  ,  …  ,  1   /     f   n      (   α   1      )  ]      {\displaystyle A=K[\alpha _{1}][1/f_{2}(\alpha _{1}),\ldots ,1/f_{n}(\alpha _{1})]}         R      {\displaystyle R}         A      {\displaystyle A}         A      {\displaystyle A}         A  =  K  (   α   1      )      {\displaystyle A=K(\alpha _{1})}     
证明 2 (Artin-Tate) :
如果     A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }         A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }         A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }     
实际上,假设    A  =   F    [   a   1      ,  …  ,   a   n      ]      {\displaystyle A=\mathbb {F} [a_{1},\ldots ,a_{n}]}          a   1      ,  …  ,   a   r          {\displaystyle a_{1},\ldots ,a_{r}}          F        {\displaystyle \mathbb {F} }         r  ≥  1      {\displaystyle r\geq 1}          a   r  +  1      ,  …  ,   a   n          {\displaystyle a_{r+1},\ldots ,a_{n}}          F        {\displaystyle \mathbb {F} }         A  =   F    [   a   1      ,  …  ,   a   n      ]  ⊆   F    (   a   1      ,  …  ,   a   n      )      {\displaystyle A=\mathbb {F} [a_{1},\ldots ,a_{n}]\subseteq \mathbb {F} (a_{1},\ldots ,a_{n})}          F    (   a   1      ,  …  ,   a   n      )  ⊆  A      {\displaystyle \mathbb {F} (a_{1},\ldots ,a_{n})\subseteq A}         A      {\displaystyle A}          a   1      ,  …  ,   a   n          {\displaystyle a_{1},\ldots ,a_{n}}          F        {\displaystyle \mathbb {F} }         A  =   F    (   a   1      ,  …  ,   a   n      )      {\displaystyle A=\mathbb {F} (a_{1},\ldots ,a_{n})}     
由于所有      a   r  +  1      ,  …  ,   a   n          {\displaystyle a_{r+1},\ldots ,a_{n}}          F        {\displaystyle \mathbb {F} }          F    (   a   1      ,  …  ,   a   r      )      {\displaystyle \mathbb {F} (a_{1},\ldots ,a_{r})}         f  ∈   F    [   x   1      ,  …  ,   x   n      ]  ∖  {  0  }      {\displaystyle f\in \mathbb {F} [x_{1},\ldots ,x_{n}]\setminus \{0\}}         f  (   a   1      ,  …  ,   a   r      )  =  0      {\displaystyle f(a_{1},\ldots ,a_{r})=0}          a   r          {\displaystyle a_{r}}          F    (   a   1      ,  …  ,   a   r  −  1      )      {\displaystyle \mathbb {F} (a_{1},\ldots ,a_{r-1})}          a   r          {\displaystyle a_{r}}         r      {\displaystyle r}          a   r  +  1      ,  …  ,   a   n          {\displaystyle a_{r+1},\ldots ,a_{n}}          F    (   a   1      ,  …  ,   a   r      )      {\displaystyle \mathbb {F} (a_{1},\ldots ,a_{r})}          a   1          {\displaystyle a_{1}}          F        {\displaystyle \mathbb {F} }         A      {\displaystyle A}          F    (   a   1      )      {\displaystyle \mathbb {F} (a_{1})}          F    (   a   1      )  (   a   2      )      {\displaystyle \mathbb {F} (a_{1})(a_{2})}     
因此,我们可以假设     a   1      ,  …  ,   a   r          {\displaystyle a_{1},\ldots ,a_{r}}          F        {\displaystyle \mathbb {F} }     
     F    [   x   1      ,  …  ,   x   r      ]  →   F    [   a   1      ,  …  ,   a   r      ]  ,  f  (   x   1      ,  …  ,   x   r      )  ↦  f  (   a   1      ,  …  ,   a   r      )      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{r}]\to \mathbb {F} [a_{1},\ldots ,a_{r}],f(x_{1},\ldots ,x_{r})\mapsto f(a_{1},\ldots ,a_{r})}     是一个同构(它是同态,满射和单射),因此     F    [   a   1      ,  …  ,   a   r      ]      {\displaystyle \mathbb {F} [a_{1},\ldots ,a_{r}]}          F    [   x   1      ,  …  ,   x   r      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{r}]}     
现在设     G    :=   F    (   a   1      ,  …  ,   a   r      )      {\displaystyle \mathbb {G} :=\mathbb {F} (a_{1},\ldots ,a_{r})}          F    ⊆   G    ⊆  A      {\displaystyle \mathbb {F} \subseteq \mathbb {G} \subseteq A}         A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }          G        {\displaystyle \mathbb {G} }          G        {\displaystyle \mathbb {G} }          G        {\displaystyle \mathbb {G} }          F        {\displaystyle \mathbb {F} }     
        f   1      (   a   1      ,  …  ,   a   n      )      g   1      (   a   1      ,  …  ,   a   n      )        ,  …  ,      f   m      (   a   1      ,  …  ,   a   n      )      g   m      (   a   1      ,  …  ,   a   n      )            {\displaystyle {\frac {f_{1}(a_{1},\ldots ,a_{n})}{g_{1}(a_{1},\ldots ,a_{n})}},\ldots ,{\frac {f_{m}(a_{1},\ldots ,a_{n})}{g_{m}(a_{1},\ldots ,a_{n})}}}     是      G        {\displaystyle \mathbb {G} }          F        {\displaystyle \mathbb {F} }          p   1      ,  …  ,   p   l          {\displaystyle p_{1},\ldots ,p_{l}}          g   1      ,  …  ,   g   m          {\displaystyle g_{1},\ldots ,g_{m}}          F    [   a   1      ,  …  ,   a   r      ]      {\displaystyle \mathbb {F} [a_{1},\ldots ,a_{r}]}     
假设      q   1      ,  …  ,   q   k          {\displaystyle q_{1},\ldots ,q_{k}}          F    [   a   1      ,  …  ,   a   r      ]      {\displaystyle \mathbb {F} [a_{1},\ldots ,a_{r}]}          q   1      ⋅   q   2      ⋯   q   n      +  1  ∈   F    [   a   1      ,  …  ,   a   r      ]      {\displaystyle q_{1}\cdot q_{2}\cdots q_{n}+1\in \mathbb {F} [a_{1},\ldots ,a_{r}]}          q   1      ,  …  ,   q   k          {\displaystyle q_{1},\ldots ,q_{k}}          q   j          {\displaystyle q_{j}}     
    1  =   q   j      (   q   1      ⋯   q   j  −  1       q   j  +  1      ⋯   q   k      +  s  )      {\displaystyle 1=q_{j}(q_{1}\cdots q_{j-1}q_{j+1}\cdots q_{k}+s)}     对于某个     s  ∈   F    [   a   1      ,  …  ,   a   r      ]      {\displaystyle s\in \mathbb {F} [a_{1},\ldots ,a_{r}]}          F    [   x   1      ,  …  ,   x   r      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{r}]}         1      {\displaystyle 1}         1      {\displaystyle 1}     
因此,我们可以选择     p  ∉  {   p   1      ,  …  ,   p   l      }      {\displaystyle p\notin \{p_{1},\ldots ,p_{l}\}}         1   /    p      {\displaystyle 1/p}          G        {\displaystyle \mathbb {G} }         ◻      {\displaystyle \Box }     
证明 3(使用 Noether 规范化) :
根据域的 Noether 规范化引理,我们可以选择      c   1      ,  …  ,   c   k      ∈  A      {\displaystyle c_{1},\ldots ,c_{k}\in A}          F        {\displaystyle \mathbb {F} }         A      {\displaystyle A}          F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}          m   1      ,  …  ,   m   l          {\displaystyle m_{1},\ldots ,m_{l}}         A      {\displaystyle A}          F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}         A      {\displaystyle A}         ⇒      {\displaystyle \Rightarrow }          F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}         A      {\displaystyle A}          F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}          F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}         k  ≥  1      {\displaystyle k\geq 1}          c   1      ,  …  ,   c   k          {\displaystyle c_{1},\ldots ,c_{k}}     
     F    [   x   1      ,  …  ,   x   k      ]  →   F    [   c   1      ,  …  ,   c   k      ]  ,  f  (   x   1      ,  …  ,   x   k      )  ↦  f  (   c   1      ,  …  ,   c   k      )      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{k}]\to \mathbb {F} [c_{1},\ldots ,c_{k}],f(x_{1},\ldots ,x_{k})\mapsto f(c_{1},\ldots ,c_{k})}     实际上是一个同构,因此      F    [   c   1      ,  …  ,   c   k      ]      {\displaystyle \mathbb {F} [c_{1},\ldots ,c_{k}]}         k  =  0      {\displaystyle k=0}         A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }         A      {\displaystyle A}          F        {\displaystyle \mathbb {F} }         ◻      {\displaystyle \Box }     
有几个密切相关的结果都以“希尔伯特零点定理”命名。我们将陈述并证明文献中常见的那些结果。这些结果是“弱形式”、“公共根形式”和“强形式”。希尔伯特最初证明的结果是强形式。
希尔伯特零点定理弱形式的表述和证明自然地需要以下引理。
引理 24.5 :
令      F        {\displaystyle \mathbb {F} }         m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}          F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m}         {  c  +  m   |    c  ∈   F    }  ⊆   F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \{c+m|c\in \mathbb {F} \}\subseteq \mathbb {F} [x_{1},\ldots ,x_{n}]/m}          F        {\displaystyle \mathbb {F} }     真 有限域扩张),那么      F    [   x   1      ,  …  ,   x   n      ]   /    m  =  {  c  +  m   |    c  ∈   F    }      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m=\{c+m|c\in \mathbb {F} \}}     
证明 1(使用扎里斯基引理) :
     F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m}         {  c  +  m   |    c  ∈   F    }      {\displaystyle \{c+m|c\in \mathbb {F} \}}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         {   x   1      +  m  ,  …  ,   x   n      +  m  }      {\displaystyle \{x_{1}+m,\ldots ,x_{n}+m\}}          F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m}         {  c  +  m   |    c  ∈   F    }      {\displaystyle \{c+m|c\in \mathbb {F} \}}          F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m}         {  c  +  m   |    c  ∈   F    }      {\displaystyle \{c+m|c\in \mathbb {F} \}}         ◻      {\displaystyle \Box }     
证明 2(使用雅各布森环) :
我们用关于     n      {\displaystyle n}     
当     n  =  1      {\displaystyle n=1}          F    [   x   1      ]      {\displaystyle \mathbb {F} [x_{1}]}         m  ≤   F    [   x   1      ]      {\displaystyle m\leq \mathbb {F} [x_{1}]}         m  =  ⟨  f  ⟩      {\displaystyle m=\langle f\rangle }         f  ∈   F    [   x   1      ]      {\displaystyle f\in \mathbb {F} [x_{1}]}          F    [   x   1      ]   /    m      {\displaystyle \mathbb {F} [x_{1}]/m}         m      {\displaystyle m}         {  c  +  m   |    c  ∈   F    }      {\displaystyle \{c+m|c\in \mathbb {F} \}}         1  +  m  ,   x   1      +  m  ,   x   1     2      +  m  ,  …  ,   x   1     d  −  1      +  m      {\displaystyle 1+m,x_{1}+m,x_{1}^{2}+m,\ldots ,x_{1}^{d-1}+m}         d  :=  deg    f      {\displaystyle d:=\deg f}         m  =  ⟨  f  ⟩      {\displaystyle m=\langle f\rangle }          F    [   x   1      ]   /    m      {\displaystyle \mathbb {F} [x_{1}]/m}     
     a   d       x   d      +  m  =  −  (   a   d  −  1       x   d  −  1      +  ⋯  +   a   1      x  +   a   0      )  +  m      {\displaystyle a_{d}x^{d}+m=-(a_{d-1}x^{d-1}+\cdots +a_{1}x+a_{0})+m}         f  (  x  )  =   a   d       x   d      +  ⋯  +   a   1      x  +   a   0          {\displaystyle f(x)=a_{d}x^{d}+\cdots +a_{1}x+a_{0}}     使我们能够用更小的单项式来表示次数      ≥  d      {\displaystyle \geq d}     
现在假设     n  −  1      {\displaystyle n-1}         m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}          F    [   x   1      ,  …  ,   x   n  −  1      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n-1}]}          F        {\displaystyle \mathbb {F} }          F    [   x   1      ,  …  ,   x   n      ]  =   F    [   x   1      ,  …  ,   x   n  −  1      ]  [   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]=\mathbb {F} [x_{1},\ldots ,x_{n-1}][x_{n}]}         m      {\displaystyle m}          F    [   x   1      ,  …  ,   x   n  −  1      ]  [   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n-1}][x_{n}]}          m   0      :=   F    [   x   1      ,  …  ,   x   n  −  1      ]  ∩  m      {\displaystyle m_{0}:=\mathbb {F} [x_{1},\ldots ,x_{n-1}]\cap m}          F    [   x   1      ,  …  ,   x   n  −  1      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n-1}]}          F    [   x   1      ,  …  ,   x   n  −  1      ]   /     m   0          {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n-1}]/m_{0}}         {  c  +   m   0       |    c  ∈   F    }      {\displaystyle \{c+m_{0}|c\in \mathbb {F} \}}     
我们定义理想     p  :=   m   0       F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle p:=m_{0}\mathbb {F} [x_{1},\ldots ,x_{n}]}     
        φ  :   F    [   x   1      ,  …  ,   x   n  −  1      ]  [   x   n      ]   /    p     ↦  (   F    [   x   1      ,  …  ,   x   n  −  1      ]   /     m   0      )  [   x   n      ]         a   k       x   n     k      +  ⋯  +   a   1       x   n      +   a   0      +  p     ↦  (   a   k      +   m   0      )   x   n     k      +  ⋯  +  (   a   1      +   m   0      )   x   n      +  (   a   0      +   m   0      )              {\displaystyle {\begin{aligned}\varphi :\mathbb {F} [x_{1},\ldots ,x_{n-1}][x_{n}]/p&\mapsto (\mathbb {F} [x_{1},\ldots ,x_{n-1}]/m_{0})[x_{n}]\\a_{k}x_{n}^{k}+\cdots +a_{1}x_{n}+a_{0}+p&\mapsto (a_{k}+m_{0})x_{n}^{k}+\cdots +(a_{1}+m_{0})x_{n}+(a_{0}+m_{0})\end{aligned}}}     该映射将     {  c  +  p   |    c  ∈   F    }      {\displaystyle \{c+p|c\in \mathbb {F} \}}         {  (  c  +   m   0      )   |    c  ∈   F    }      {\displaystyle \{(c+m_{0})|c\in \mathbb {F} \}}     
此外,由于     m  ⊊  p      {\displaystyle m\subsetneq p}          π   p      (  m  )      {\displaystyle \pi _{p}(m)}          F    [   x   1      ,  …  ,   x   n  −  1      ]  [   x   n      ]   /    p      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n-1}][x_{n}]/p}         φ  (  p   /    m  )      {\displaystyle \varphi (p/m)}         (   F    [   x   1      ,  …  ,   x   n  −  1      ]   /     m   0      )  [   x   n      ]      {\displaystyle (\mathbb {F} [x_{1},\ldots ,x_{n-1}]/m_{0})[x_{n}]}          (   (   F    [   x   1      ,  …  ,   x   n  −  1      ]   /     m   0      )  [   x   n      ]    )      /      φ  (   π   p      (  m  )  )      {\displaystyle \left((\mathbb {F} [x_{1},\ldots ,x_{n-1}]/m_{0})[x_{n}]\right){\big /}\varphi (\pi _{p}(m))}         n  =  1      {\displaystyle n=1}         {  d  +  φ  (  m   /    p  )   |    d  ∈   F    [   x   1      ,  …  ,   x   n  −  1      ]   /     m   0      }      {\displaystyle \{d+\varphi (m/p)|d\in \mathbb {F} [x_{1},\ldots ,x_{n-1}]/m_{0}\}}     
一般来说,任何     F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          F        {\displaystyle \mathbb {F} }          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         c  +  m      {\displaystyle c+m}          F    [   x   1      ,  …  ,   x   n      ]   /    m      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m}         c      {\displaystyle c}     
     F    [   x   1      ,  …  ,   x   n      ]   /    m  ⊇  {  c  +  m   |    c  ∈   F    }  ≅   F    ,  c  +  m  ↦  c      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m\supseteq \{c+m|c\in \mathbb {F} \}\cong \mathbb {F} ,c+m\mapsto c}     因此,当      F        {\displaystyle \mathbb {F} }          F    [   x   1      ,  …  ,   x   n      ]   /    m  ≅   F        {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m\cong \mathbb {F} }     
定理 24.6(希尔伯特零点定理,弱形式) :
令      F    =     F    ¯          {\displaystyle \mathbb {F} ={\overline {\mathbb {F} }}}         ξ  =  (   ξ   1      ,  …  ,   ξ   n      )  ∈    F     n          {\displaystyle \xi =(\xi _{1},\ldots ,\xi _{n})\in \mathbb {F} ^{n}}     
     m   ξ      :=  ⟨   x   1      −   ξ   1      ,  …  ,   x   n      −   ξ   n      ⟩  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m_{\xi }:=\langle x_{1}-\xi _{1},\ldots ,x_{n}-\xi _{n}\rangle \leq \mathbb {F} [x_{1},\ldots ,x_{n}]}     根据引理 21.12,     m   ξ          {\displaystyle m_{\xi }}     
弱 Hilbert 零点定理的断言是:每个极大理想     m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}          m   ξ          {\displaystyle m_{\xi }}         ξ  ∈    F     n          {\displaystyle \xi \in \mathbb {F} ^{n}}     
 
证明 :
Let     m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          F        {\displaystyle \mathbb {F} }          F    [   x   1      ,  …  ,   x   n      ]   /    m  ≅   F        {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]/m\cong \mathbb {F} }         c  +  m      {\displaystyle c+m}         c      {\displaystyle c}          x   j      +  m      {\displaystyle x_{j}+m}          α   j          {\displaystyle \alpha _{j}}          F        {\displaystyle \mathbb {F} }          α   j      +  m      {\displaystyle \alpha _{j}+m}          α   j      ∈   F        {\displaystyle \alpha _{j}\in \mathbb {F} }          α   j      +  m  =   x   j      +  m  ⇔   x   j      −   α   j      ∈  m      {\displaystyle \alpha _{j}+m=x_{j}+m\Leftrightarrow x_{j}-\alpha _{j}\in m}         ⟨   x   1      −   α   1      ,  …  ,   x   n      −   α   n      ⟩  ⊆  m      {\displaystyle \langle x_{1}-\alpha _{1},\ldots ,x_{n}-\alpha _{n}\rangle \subseteq m}          α   1      ,  …  ,   α   n          {\displaystyle \alpha _{1},\ldots ,\alpha _{n}}         ⟨   x   1      −   α   1      ,  …  ,   x   n      −   α   n      ⟩      {\displaystyle \langle x_{1}-\alpha _{1},\ldots ,x_{n}-\alpha _{n}\rangle }         ⟨   x   1      −   α   1      ,  …  ,   x   n      −   α   n      ⟩  =  m      {\displaystyle \langle x_{1}-\alpha _{1},\ldots ,x_{n}-\alpha _{n}\rangle =m}         ◻      {\displaystyle \Box }     
定理 24.7 (Hilbert 零点定理,公共根形式) :
令      F    =     F    ¯          {\displaystyle \mathbb {F} ={\overline {\mathbb {F} }}}          f   1      ,  …  ,   f   k      ∈   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle f_{1},\ldots ,f_{k}\in \mathbb {F} [x_{1},\ldots ,x_{n}]}     
    ⟨   f   1      ,  …  ,   f   k      ⟩  ⊊   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \langle f_{1},\ldots ,f_{k}\rangle \subsetneq \mathbb {F} [x_{1},\ldots ,x_{n}]}     那么存在     ξ  =  (   ξ   1      ,  …  ,   ξ   n      )  ∈    F     n          {\displaystyle \xi =(\xi _{1},\ldots ,\xi _{n})\in \mathbb {F} ^{n}}          f   1      (  ξ  )  =   f   2      (  ξ  )  =  …  =   f   k      (  ξ  )  =  0      {\displaystyle f_{1}(\xi )=f_{2}(\xi )=\ldots =f_{k}(\xi )=0}     
 
证明 :
这是从弱形式得出的,因为     ⟨   f   1      ,  …  ,   f   k      ⟩      {\displaystyle \langle f_{1},\ldots ,f_{k}\rangle }         m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}         m  =  ⟨   x   1      −   α   1      ,  …  ,   x   n      −   α   n      ⟩      {\displaystyle m=\langle x_{1}-\alpha _{1},\ldots ,x_{n}-\alpha _{n}\rangle }          α   1      ,  …  ,   α   n      ∈   F        {\displaystyle \alpha _{1},\ldots ,\alpha _{n}\in \mathbb {F} }         {  (   α   1      ,  …  ,   α   n      )  }  =  V  (  m  )  ⊆  V  (  ⟨   f   1      ,  …  ,   f   k      ⟩  )      {\displaystyle \{(\alpha _{1},\ldots ,\alpha _{n})\}=V(m)\subseteq V(\langle f_{1},\ldots ,f_{k}\rangle )}         (   α   1      ,  …  ,   α   n      )  ∈  V  (  ⟨   f   1      ,  …  ,   f   k      ⟩  )      {\displaystyle (\alpha _{1},\ldots ,\alpha _{n})\in V(\langle f_{1},\ldots ,f_{k}\rangle )}         ξ  :=  (   α   1      ,  …  ,   α   n      )      {\displaystyle \xi :=(\alpha _{1},\ldots ,\alpha _{n})}          f   1      ,  …  ,   f   k          {\displaystyle f_{1},\ldots ,f_{k}}         ◻      {\displaystyle \Box }     
特别是,如果     I      {\displaystyle I}         r  (  I  )  =  I      {\displaystyle r(I)=I}     
    I  (  V  (  I  )  )  =  I      {\displaystyle I(V(I))=I}     注意,结合规则
    V  (  I  (  V  (  S  )  )  )  =  V  (  S  )      {\displaystyle V(I(V(S)))=V(S)}     对于任何代数集     V  (  S  )      {\displaystyle V(S)}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}           F     n          {\displaystyle \mathbb {F} ^{n}}     
    V  (  ⋅  )  :  {   radical ideals of      F    [   x   1      ,  …  ,   x   n      ]  }  →  {   algebraic sets in       F     n      }      {\displaystyle V(\cdot ):\{{\text{radical ideals of }}\mathbb {F} [x_{1},\ldots ,x_{n}]\}\to \{{\text{algebraic sets in }}\mathbb {F} ^{n}\}}     和逆
    I  (  ⋅  )  :  {   algebraic sets in       F     n      }  →  {   radical ideals of      F    [   x   1      ,  …  ,   x   n      ]  }      {\displaystyle I(\cdot ):\{{\text{algebraic sets in }}\mathbb {F} ^{n}\}\to \{{\text{radical ideals of }}\mathbb {F} [x_{1},\ldots ,x_{n}]\}}     证明 1(使用 Jacobson 环) :
当然,域是一个 Jacobson 环。此外,根据 Goldman 的第一个准则(定理 14.4),我们可以推断      F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         f  ∈   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle f\in \mathbb {F} [x_{1},\ldots ,x_{n}]}         V  (  I  )      {\displaystyle V(I)}         m  ≤   F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle m\leq \mathbb {F} [x_{1},\ldots ,x_{n}]}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         I      {\displaystyle I}         m      {\displaystyle m}          m   ξ      =  ⟨   x   1      −   ξ   1      ,  …  ,   x   n      −   ξ   n      ⟩      {\displaystyle m_{\xi }=\langle x_{1}-\xi _{1},\ldots ,x_{n}-\xi _{n}\rangle }         ξ  =  (   ξ   1      ,  …  ,   ξ   n      )  ∈    F     n          {\displaystyle \xi =(\xi _{1},\ldots ,\xi _{n})\in \mathbb {F} ^{n}}     
现在我们有     ξ  ∈  V  (   m   ξ      )      {\displaystyle \xi \in V(m_{\xi })}          m   ξ          {\displaystyle m_{\xi }}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          x   1      −   ξ   1      ,  …  ,   x   n      −   ξ   n          {\displaystyle x_{1}-\xi _{1},\ldots ,x_{n}-\xi _{n}}         I  (  V  (   m   ξ      )  )      {\displaystyle I(V(m_{\xi }))}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          m   ξ      ⊆  I  (  V  (   m   ξ      )  )      {\displaystyle m_{\xi }\subseteq I(V(m_{\xi }))}          m   ξ          {\displaystyle m_{\xi }}         I  (  V  (   m   ξ      )  )  =   m   ξ          {\displaystyle I(V(m_{\xi }))=m_{\xi }}     
此外,    V  (   m   ξ      )  ⊆  V  (  I  )      {\displaystyle V(m_{\xi })\subseteq V(I)}         I  (  V  (  I  )  )  ⊆  I  (  V  (   m   ξ      )  )      {\displaystyle I(V(I))\subseteq I(V(m_{\xi }))}         f  ∈  I  (  V  (   m   ξ      )  )  =   m   ξ          {\displaystyle f\in I(V(m_{\xi }))=m_{\xi }}     
由于     f  ∈  I  (  V  (  I  )  )      {\displaystyle f\in I(V(I))}         I  (  V  (  I  )  )      {\displaystyle I(V(I))}         I      {\displaystyle I}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         I  (  V  (  I  )  )  ⊆  r  (  I  )      {\displaystyle I(V(I))\subseteq r(I)}         r  (  I  )  ⊆  I  (  V  (  I  )  )      {\displaystyle r(I)\subseteq I(V(I))}         I  (  V  (  I  )  )  =  r  (  I  )      {\displaystyle I(V(I))=r(I)}         ◻      {\displaystyle \Box }     
证明 2 (Rabinowitsch 技巧) :
首先,我们注意到     ⊇      {\displaystyle \supseteq }          g   n      ∈  I      {\displaystyle g^{n}\in I}         g  (  x   )   n      =  0      {\displaystyle g(x)^{n}=0}         x  ∈  V  (  I  )      {\displaystyle x\in V(I)}         g  (  x  )  =  0      {\displaystyle g(x)=0}         x  ∈  V  (  I  )      {\displaystyle x\in V(I)}         g  ∈  I  (  V  (  I  )  )      {\displaystyle g\in I(V(I))}     
    ⊆      {\displaystyle \subseteq }          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}         I      {\displaystyle I}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}     
    I  =  ⟨   f   1      (  x  )  ,  …  ,   f   k      (  x  )  ⟩      {\displaystyle I=\langle f_{1}(x),\ldots ,f_{k}(x)\rangle }     令     g  ∈  I  (  V  (  I  )  )      {\displaystyle g\in I(V(I))}          F    [   x   1      ,  …  ,   x   n      ,  z  ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n},z]}         h  (   x   1      ,  …  ,   x   n      ,  z  )  :=  1  −  z  g  (   x   1      ,  …  ,   x   n      )      {\displaystyle h(x_{1},\ldots ,x_{n},z):=1-zg(x_{1},\ldots ,x_{n})}          f   1      ,  …  ,   f   n      ,  h      {\displaystyle f_{1},\ldots ,f_{n},h}          f   1      ,  …  ,   f   n          {\displaystyle f_{1},\ldots ,f_{n}}          x   1      ,  …  ,   x   n      ,  z      {\displaystyle x_{1},\ldots ,x_{n},z}          f   j      (   x   1      ,  …  ,   x   n      ,  z  )  :=   f   j      (   x   1      ,  …  ,   x   n      )      {\displaystyle f_{j}(x_{1},\ldots ,x_{n},z):=f_{j}(x_{1},\ldots ,x_{n})}          f   1      ,  …  ,   f   n          {\displaystyle f_{1},\ldots ,f_{n}}         (   α   1      ,  …  ,   α   n      ,  β  )      {\displaystyle (\alpha _{1},\ldots ,\alpha _{n},\beta )}         β      {\displaystyle \beta }          f   1      ,  …  ,   f   n          {\displaystyle f_{1},\ldots ,f_{n}}         g      {\displaystyle g}         h  (   α   1      ,  …  ,   α   n      ,  β  )  =  1  −  β  ⋅  0  =  1  ≠  0      {\displaystyle h(\alpha _{1},\ldots ,\alpha _{n},\beta )=1-\beta \cdot 0=1\neq 0}     
现在我们可以将 Nullstellensatz 的公共根形式应用于     n  +  1      {\displaystyle n+1}          f   1      ,  …  ,   f   n      ,  h      {\displaystyle f_{1},\ldots ,f_{n},h}         ⟨   f   1      ,  …  ,   f   n      ,  h  ⟩      {\displaystyle \langle f_{1},\ldots ,f_{n},h\rangle }          F    [   x   1      ,  …  ,   x   n      ,  z  ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n},z]}          η   1      ,  …  ,   η   n      ,  μ  ∈   F    [   x   1      ,  …  ,   x   n      ,  z  ]      {\displaystyle \eta _{1},\ldots ,\eta _{n},\mu \in \mathbb {F} [x_{1},\ldots ,x_{n},z]}     
    1  =   η   1      (   x   1      ,  …  ,   x   n      ,  z  )   f   1      (   x   1      ,  …  ,   x   n      ,  z  )  +  ⋯  +   η   n      (   x   1      ,  …  ,   x   n      ,  z  )   f   n      (   x   1      ,  …  ,   x   n      ,  z  )  +  μ  (   x   1      ,  …  ,   x   n      ,  z  )  h  (   x   1      ,  …  ,   x   n      ,  z  )      {\displaystyle 1=\eta _{1}(x_{1},\ldots ,x_{n},z)f_{1}(x_{1},\ldots ,x_{n},z)+\cdots +\eta _{n}(x_{1},\ldots ,x_{n},z)f_{n}(x_{1},\ldots ,x_{n},z)+\mu (x_{1},\ldots ,x_{n},z)h(x_{1},\ldots ,x_{n},z)}     转到有理函数域      F    (   x   1      ,  …  ,   x   n      )      {\displaystyle \mathbb {F} (x_{1},\ldots ,x_{n})}           1   g  (   x   1      ,  …  ,   x   n      )            {\displaystyle {\frac {1}{g(x_{1},\ldots ,x_{n})}}}         z      {\displaystyle z}         g  ≢  0      {\displaystyle g\not \equiv 0}     
    1  =   η   1      (   x   1      ,  …  ,   x   n      ,  1   /    g  )   f   1      (   x   1      ,  …  ,   x   n      ,  1   /    g  )  +  ⋯  +   η   n      (   x   1      ,  …  ,   x   n      ,  1   /    g  )   f   n      (   x   1      ,  …  ,   x   n      ,  1   /    g  )  +  μ  (   x   1      ,  …  ,   x   n      ,  1   /    g  )  h  (   x   1      ,  …  ,   x   n      ,  1   /    g  )      {\displaystyle 1=\eta _{1}(x_{1},\ldots ,x_{n},1/g)f_{1}(x_{1},\ldots ,x_{n},1/g)+\cdots +\eta _{n}(x_{1},\ldots ,x_{n},1/g)f_{n}(x_{1},\ldots ,x_{n},1/g)+\mu (x_{1},\ldots ,x_{n},1/g)h(x_{1},\ldots ,x_{n},1/g)}     为了让公式在屏幕上显示,我们省略了     g      {\displaystyle g}         h  (   x   1      ,  …  ,   x   n      ,  1   /    g  )  =  1  −     g  (   x   1      ,  …  ,   x   n      )     g  (   x   1      ,  …  ,   x   n      )        =  0      {\displaystyle h(x_{1},\ldots ,x_{n},1/g)=1-{\frac {g(x_{1},\ldots ,x_{n})}{g(x_{1},\ldots ,x_{n})}}=0}     
    1  =   η   1      (   x   1      ,  …  ,   x   n      ,  1   /    g  )   f   1      (   x   1      ,  …  ,   x   n      ,  1   /    g  )  +  ⋯  +   η   n      (   x   1      ,  …  ,   x   n      ,  1   /    g  )   f   n      (   x   1      ,  …  ,   x   n      ,  1   /    g  )      {\displaystyle 1=\eta _{1}(x_{1},\ldots ,x_{n},1/g)f_{1}(x_{1},\ldots ,x_{n},1/g)+\cdots +\eta _{n}(x_{1},\ldots ,x_{n},1/g)f_{n}(x_{1},\ldots ,x_{n},1/g)}     将此方程乘以     g      {\displaystyle g}         N  ∈   N        {\displaystyle N\in \mathbb {N} }          f   1      ,  …  ,   f   n          {\displaystyle f_{1},\ldots ,f_{n}}          g   N          {\displaystyle g^{N}}          F    [   x   1      ,  …  ,   x   n      ]      {\displaystyle \mathbb {F} [x_{1},\ldots ,x_{n}]}          f   1      ,  …  ,   f   n          {\displaystyle f_{1},\ldots ,f_{n}}         I      {\displaystyle I}         g  ∈  r  (  I  )      {\displaystyle g\in r(I)}         ◻      {\displaystyle \Box }     
请注意 Yuri Rainich ("Rabinowitsch") 可能 是如何发现这个技巧的。也许他意识到弱零点定理是针对任意    n      {\displaystyle n}         n      {\displaystyle n}     
该图表展示了本书中介绍的通往希尔伯特零点定理的不同路径。