跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
练习
切换目录
复几何/复向量丛和全纯向量丛
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
复几何
练习
[
编辑
|
编辑源代码
]
设
M
:=
C
P
n
{\displaystyle M:=\mathbb {C} P^{n}}
并定义
C
P
n
{\displaystyle \mathbb {C} P^{n}}
上的
自同态线丛
为向量丛
τ
:=
{
(
[
z
]
,
x
)
∈
C
P
n
×
C
|
x
∈
[
z
]
}
{\displaystyle \tau :=\{([z],x)\in \mathbb {C} P^{n}\times \mathbb {C} |x\in [z]\}}
且投影为
π
:
(
[
z
]
,
x
)
↦
[
z
]
{\displaystyle \pi :([z],x)\mapsto [z]}
。求
τ
{\displaystyle \tau }
的自然局部平凡化,使
τ
{\displaystyle \tau }
成为一个全纯线丛。
类别
:
书籍:复几何
华夏公益教科书