跳至内容

可计算性和复杂性/形式语言/乔姆斯基层次结构/无限制语言

来自维基教科书,开放的书籍,开放的世界

无限制语言

[编辑 | 编辑源代码]

顾名思义,无限制语言类别是乔姆斯基层次结构中最不严格的类别,它是无限制文法生成的语言集合。无限制文法是包含有限数量的规则 A -> B 的文法,其中 A 和 B 是终结符和非终结符的字符串,并且 A 不是空字符串。这些文法产生的语言也称为递归可枚举语言,因为理论上一个递归函数可以生成它们中的所有字符串,尽管不一定在有限的时间内。

图灵机

[编辑 | 编辑源代码]

等价于无限制语言类别的是被图灵机识别的语言类别。图灵机 (TM) 与 LBA 相同(参见 上下文敏感语言),只有一个例外:图灵机的磁带是无限的。在标准形式中,图灵机的磁带有一个左端点,但向右无限延伸。磁带的其他无限模型,例如双向无限的磁带或多个无限的磁带,等价于标准形式。

图灵机是层次结构中最强大的机器,它有能力模拟任何其他机器。它的能力等同于大多数编程语言,尽管计算机只有有限的内存,而真正的图灵机具有无限的内存。

通用图灵机

[编辑 | 编辑源代码]

图灵机也可以被编程为称为通用图灵机 (UTM) 的东西,它是一个可以接受另一个 TM(作为字符串编码)作为输入的单个 TM(意味着单个状态集、规则集和字母表),以及一个输入字符串。通用图灵机然后可以模拟另一个 TM 运行输入字符串。这种对自身类别的通用模拟是层次结构中其他机器都不具有的属性。其中一些可以被编程为模拟其类别的特定子集,但没有一个可以模拟其类别的任何给定成员。

尽管它们可能很强大,但它们确实有局限性。最明显的局限性之一是,与 LBA 不同,TM 由于无限的磁带,有无限数量的条件。这意味着 TM 不仅可以循环,它还可以处于一个无限运行的非停止模式中,永远不会循环。例如,考虑一个天真地编程的 TM,它旨在以一个正整数 *a* 作为输入,并通过计算它并在磁带上打印出来来确定 *a* 的平方根是否为有理数。如果该机器被赋予数字 2 作为输入,它将永远无法完成打印无理数 ,因此将永远运行。

以下代码是 Perl 中的示例 TM 模拟器。给定机器的描述和一个输入字符串,它模拟机器处理输入字符串,并显示机器是否接受。

语法是:progname.pl TMFile inputFile,其中 TMFile 是一个包含 TM 指令的文本文件,inputFile 是一个包含输入字符串的文本文件。一些示例输入,包括用于使机器乘以两个数字的 TM 指令集,可以在 示例 TM 输入 下找到

Perl 中的示例 TM 模拟器。

#!usr/bin/perl
use Text::ParseWords;
use strict;
use warnings;

# Grabs the filenames for the machine and the word to be run on it.
my $tmFile = $ARGV[0];
my $input = $ARGV[1];

# We use subroutines to parse and verify the data in the input files.
# The machine data is stored in the $machine structure as the keys rules, accepts, alphabet, and startState.
my $machine = readTM($tmFile);
# Rules and accepts are extracted from the $machine structure for ease of access.
my @rules = @{$machine->{rules}};
my %accepts = %{$machine->{accepts}};
# This reads the input file and parses it into an array of strings, with each element being one input symbol.
# It checks to make sure the elements are all in the machine's alphabet.
my @tape = readInput($input, $machine->{alphabet});
# $changed records whether or not a rule has been used when running through the rules list to make transitions.
my $changed = 1;
# $state is the state the Turing Machine is in, and is initialized to the start state from the machine file.
my $state = $machine->{startState};
# $tapeIndex is the position of the machine's head on the tape.
my $tapeIndex = 0;
# Now that the machine is initialized, we can begin making transitions

# As long as things keep changing, keep cycling through the rules.
while($changed)
{
   # Unless it changes while going through the rules, the machine will terminate.
    $changed = 0;
   # The current tape is printed, with the symbol under the head highlighted.
    print "@tape[0..$tapeIndex-1]<".$tape[$tapeIndex].">@tape[$tapeIndex+1..$#tape]\n";
   # The current state of the machine is printed.
    print "$state\n";
   # A new state is calculated by checking conditions against the list of rules
    for my $ruleRef (@rules)
    {
#            print "::$ruleRef->[0]??$branches[$i][0]";
#            print "::$ruleRef->[1]??$string[$branches[$i][1]]";
#            print "::$ruleRef->[2]??".$branches[$i][2][-1]."::\n";
       # Checks the current state and tape symbol against the rule being examined
        if ($ruleRef->[0] eq $state &&
            $ruleRef->[1] eq $tape[$tapeIndex])
        {
           # The state transition is printed.
#            print "State: ".$state." -> ".$ruleRef->[2]."\n\n";
           # Set the new state,
            $state = $ruleRef->[2];
           # Write the new symbol to the tape,
            $tape[$tapeIndex] = $ruleRef->[3];
           # Shift the tape to the new index,
            $tapeIndex += $ruleRef->[4];
           # and make sure it hasn't run past the left edge of the tape.
            if ($tapeIndex < 0) { $tapeIndex = 0; }
           # If the machine nears the end of the allocated tape, expand the tape.
            if ($tapeIndex >= $#tape-1) { push(@tape, "_"); }
            $changed = 1;
           # Once we've made a transition, we can stop and begin looking for the next one.
            last;
        }
    }
}
# When there are no more possible transitions, if the machine is in an accepting state,
if (exists($accepts{$state}))
{
   # Print that it accepts and quit.
    print "The machine accepts the string.\n";
    exit;
}
# Otherwise, print that it does not accept, and quit.
print "The machine does not accept the string.\n";
exit;

###################################################

sub readTM
# This subroutine reads the machine data from the specified file into variables (mostly hashes).
{
    my (%states, %accepts, %alphabet, @rules);
    open(INFILE, shift) or die "Can't open machine file: $!";
    
# This block reads the list of states from the machine file.
   # Discards the section header,
    <INFILE>;
    my $line = <INFILE>;
    chomp($line);
    my @words = parse_line('\s+', 0, $line);
    for (@words)
    {
       # records the state names for checking the rules,
        $states{$_} = 0;
    }

# This block reads the start state from the machine file.
   # Discards the header,
    <INFILE>;
    my $startState = <INFILE>;
   # takes the whole line as the start state,
    chomp($startState);
   # and makes sure that the start state is defined in the list of states.
    exists($states{$startState}) or die "The start state $startState isn't a state!";
    
# This block reads the list of accepting states from the machine file.
   # Discards the header,
    <INFILE>;
    $line = <INFILE>;
    chomp($line);
   # breaks up the line into state names,
    @words = parse_line('\s+', 0, $line);
    for (@words)
    {
   # checks to make sure that the accept states are defined states,
        exists($states{$_}) or die "$_ isn't a state!";
   # and defines those names in a new hash.  The use of a hash makes it easier to determine later if a specific state name accepts or not.
        $accepts{$_} = 1;
    }
    
# This block reads the list of symbols in the alphabet from the machine file.
   # Discards the header,
    <INFILE>;
    $line = <INFILE>;
    chomp($line);
   # breaks up the line into alphabet symbols (note that the symbols can be of arbitrary length),
    @words = parse_line('\s+', 0, $line);
   # e is used as the empty symbol in the rules.
    $alphabet{e} = 1;
    for (@words)
    {
       # This records which symbols are in the alphabet for checking the rules.
        $alphabet{$_} = 0;
    }
    
# This block reads the state transition rules from the machine file.
   # Discards the header,
    <INFILE>;
   # This variable synchronizes the position of each rule in the rules array.
    my $rulesCounter=0;
    while(<INFILE>)
    {
   # breaks each rule into start state, input symbol, stack symbol, end state, and new stack symbol.
        chomp;
        @words = parse_line('\s+', 0, $_);
   # checks that the first four pieces are defined in the state and alphabet hashes,
        exists($states{$words[0]}) or die "$words[0] isn't a defined state!";
        exists($alphabet{$words[1]}) or die "$words[1] isn't defined in the alphabet!";
        exists($states{$words[2]}) or die "$words[2] isn't a defined state!";
        exists($alphabet{$words[3]}) or die "$words[3] isn't defined in the alphabet!";
   # and converts the left/right instruction into a number to be added to the position counter.
        if ($words[4] eq "left" || $words[4] eq "-1")
        {
            $words[4]=-1;
        }
        elsif ($words[4] eq "right" || $words[4] eq "+1")
        {
            $words[4]=1;
        }
        else
        {
            die "$words[4] isn't left, right, -1, or +1!";
        }
   # then creates an array of each rule.
        for (0..4)
        {
            $rules[$rulesCounter][$_] = $words[$_];
        }
       # The synchronization variable has to be updated.
        $rulesCounter++;
    }

   # Reading complete, the subroutine closes the file and returns the name of the start state.
    close INFILE;
   # The relevant data is stored in the $machine structure and returned to the main routine.
    my $machine = 
    {
        rules      => \@rules,
        accepts    => \%accepts,
        alphabet   => \%alphabet,
        startState => $startState
    };
    return $machine;
}

sub readInput
# This subroutine reads the starting tape from the specified file into an array of symbols.
{
    open(INFILE, shift) or die "Can't open ".$input.": $!";
    my $alphaRef = shift;
   # The first line of the file is read as the initial state of the tape, with symbols delimited by spaces.
    my $line = <INFILE>."";
    chomp($line);
    my @tape = parse_line('\s+', 0, $line);
   # This makes sure every symbol in the input string was defined in the machine's alphabet.
    for (@tape)
    { exists($alphabet->{$_}) or die "$_ in $input isn't in this machine's alphabet!"; }
    close INFILE;
    return @tape;
}

上一页 | 下一页

华夏公益教科书