跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
电路配置
2
公式
切换公式子部分
2.1
电路的阻抗
2.2
微分方程
2.2.1
电路的自然响应
2.2.2
电路的共振响应
3
摘要
切换目录
电子学/电子学公式/串联电路/串联 RLC
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放世界中的开放书籍
<
电子学
|
电子学公式
|
串联电路
电路配置
[
编辑
|
编辑源代码
]
公式
[
编辑
|
编辑源代码
]
电路的阻抗
[
编辑
|
编辑源代码
]
电路的总阻抗
Z
=
Z
R
+
Z
L
{\displaystyle Z=Z_{R}+Z_{L}}
Z
=
R
+
j
ω
L
{\displaystyle Z=R+j\omega L}
Z
=
1
R
(
1
+
j
ω
T
)
{\displaystyle Z={\frac {1}{R}}(1+j\omega T)}
T
=
L
R
{\displaystyle T={\frac {L}{R}}}
微分方程
[
编辑
|
编辑源代码
]
电路在平衡时的微分方程
L
d
i
d
t
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {di}{dt}}+{\frac {1}{C}}\int idt+iR=0}
d
2
i
d
t
2
+
R
L
d
i
d
t
+
1
L
C
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}+{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}=0}
s
2
+
R
L
s
+
1
L
C
=
0
{\displaystyle s^{2}+{\frac {R}{L}}s+{\frac {1}{LC}}=0}
s
=
(
−
α
±
λ
)
t
{\displaystyle s=(-\alpha \pm \lambda )t}
λ
=
α
2
−
β
2
{\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}}
α
=
R
2
L
{\displaystyle \alpha ={\frac {R}{2L}}}
β
=
1
L
C
{\displaystyle \beta ={\frac {1}{LC}}}
电路的自然响应
[
编辑
|
编辑源代码
]
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
{\displaystyle i=e^{(}-\alpha t)}
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
λ
t
)
+
e
(
−
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}\lambda t)+e^{(}-\lambda t)]}
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
j
λ
t
)
+
e
(
−
j
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}j\lambda t)+e^{(}-j\lambda t)]}
电路的谐振响应
[
edit
|
edit source
]
Z
L
−
Z
C
=
0
{\displaystyle Z_{L}-Z_{C}=0}
。
Z
L
=
Z
C
{\displaystyle Z_{L}=Z_{C}}
。
ω
L
=
1
ω
C
{\displaystyle \omega L={\frac {1}{\omega C}}}
。
ω
=
1
L
C
{\displaystyle \omega ={\sqrt {\frac {1}{LC}}}}
V
L
+
V
C
=
0
{\displaystyle V_{L}+V_{C}=0}
.
{\displaystyle }
ω
=
0
{\displaystyle \omega =0}
。
ω
=
0
{\displaystyle \omega =0}
总结
[
edit
|
edit source
]
类别
:
书:电子学
华夏公益教科书