给定以下值,当开关闭合时,系统的响应是什么?
α = R 2 L = 1000 {\displaystyle \alpha ={\frac {R}{2L}}=1000}
ω n = 1 L C ≈ 4472 {\displaystyle \omega _{n}={\frac {1}{\sqrt {LC}}}\approx 4472}
v n ( t ) = e − 1000 t [ B 1 cos ( 4359 t ) + B 2 sin ( 4359 t ) ] {\displaystyle v_{n}(t)=e^{-1000t}{\big [}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big ]}}
求解 B 1 {\displaystyle B_{1}} 和 B 2 {\displaystyle B_{2}}
从方程 \ref{eq:vf}, v f = 1 {\displaystyle v_{f}=1} 对于幅值为 1V 的单位阶跃。 因此,将 v f {\displaystyle v_{f}} 和 v n ( t ) {\displaystyle v_{n}(t)} 代入方程 \ref{eq:nonhomogeneous} 得到
v c ( t ) = 1 + e − 1000 t [ B 1 cos ( 4359 t ) + B 2 sin ( 4359 t ) ] {\displaystyle v_{c}(t)=1+e^{-1000t}{\big [}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big ]}}
对于 t = 0 {\displaystyle t=0} ,电容器两端的电压为零, v c ( t ) = 0 {\displaystyle v_{c}(t)=0}
0 = 1 + B 1 cos ( 0 ) + B 2 sin ( 0 ) {\displaystyle 0=1+B_{1}\cos(0)+B_{2}\sin(0)}
B 1 = − 1 (7) {\displaystyle B_{1}=-1{\mbox{ (7)}}}
对于 t = 0 {\displaystyle t=0} ,电感器中的电流必须为零, i ( 0 ) = 0 {\displaystyle i(0)=0}
i ( t ) = d v c ( t ) d t C {\displaystyle i(t)={\frac {dv_{c}(t)}{dt}}C}
i ( 0 ) = 100 ⋅ 10 − 9 [ e − 1000 t ( − 4359 B 1 sin ( 4359 t ) + 4359 B 2 cos ( 4359 t ) ) − 1000 e − 1000 t ( B 1 cos ( 4359 t ) + B 2 sin ( 4359 t ) ) ] {\displaystyle i(0)=100\cdot 10^{-9}{\big [}e^{-1000t}{\big (}-4359B_{1}\sin(4359t)+4359B_{2}\cos(4359t){\big )}-1000e^{-1000t}{\big (}B_{1}\cos(4359t)+B_{2}\sin(4359t){\big )}{\big ]}}
0 = 100 ⋅ 10 − 9 [ 4359 B 2 − 1000 B 1 ] {\displaystyle 0=100\cdot 10^{-9}{\big [}4359B_{2}-1000B_{1}{\big ]}}
将公式\ref{eq:B1}中的 B 1 {\displaystyle B_{1}} 代入得
B 2 ≈ − 0.229 {\displaystyle B_{2}\approx -0.229}
当 t > 0 {\displaystyle t>0} 时, v c ( t ) {\displaystyle v_{c}(t)} 可表示为
v c ( t ) = 1 − e − 1000 t [ cos ( 4359 t ) + 0.229 sin ( 4359 t ) ] {\displaystyle v_{c}(t)=1-e^{-1000t}{\big [}\cos(4359t)+0.229\sin(4359t){\big ]}}
v o u t {\displaystyle v_{out}} 可表示为
v o u t = V i n − v c ( t ) {\displaystyle v_{out}=V_{in}-v_{c}(t)}
v o u t = V u ( t ) − v c ( t ) {\displaystyle v_{out}=Vu(t)-v_{c}(t)}
当 t > 0 {\displaystyle t>0} 时, v o u t {\displaystyle v_{out}} 可表示为
v o u t = e − 1000 t [ cos ( 4359 t ) + 0.229 sin ( 4359 t ) ] {\displaystyle v_{out}=e^{-1000t}{\big [}\cos(4359t)+0.229\sin(4359t){\big ]}}