跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移至侧边栏
隐藏
开始
1
指数衰减振幅正弦波振荡器
切换指数衰减振幅正弦波振荡器子部分
1.1
配置
2
数学分析
3
总结
切换目录
电子学基础/电子振荡器/指数衰减振幅正弦波振荡器
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移至侧边栏
隐藏
来自维基教科书,开放世界中的开放书籍
<
电子学基础
|
电子振荡器
指数衰减振幅正弦波振荡器
[
编辑
|
编辑源代码
]
指数衰减振幅正弦波振荡器是一种电子设备,能够产生指数衰减振幅正弦波的振荡。
配置
[
编辑
|
编辑源代码
]
RLC 串联连接
数学分析
[
编辑
|
编辑源代码
]
L
d
i
d
t
i
+
1
C
∫
i
d
t
+
1
L
C
=
0
{\displaystyle L{\frac {di}{dt}}i+{\frac {1}{C}}\int idt+{\frac {1}{LC}}=0}
d
2
i
d
t
2
+
+
R
L
d
i
d
t
+
1
L
C
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}++{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}=0}
s
2
+
R
L
s
+
1
L
C
=
0
{\displaystyle s^{2}+{\frac {R}{L}}s+{\frac {1}{LC}}=0}
s
=
(
−
α
±
λ
)
t
{\displaystyle s=(-\alpha \pm \lambda )t}
α
=
R
2
L
{\displaystyle \alpha ={\frac {R}{2L}}}
β
=
1
L
C
{\displaystyle \beta ={\frac {1}{LC}}}
λ
=
α
2
−
β
2
{\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}}
λ
<
0
{\displaystyle \lambda <0}
i
=
e
(
−
α
t
)
[
e
(
j
ω
t
)
+
e
(
−
j
ω
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}j\omega t)+e^{(}-j\omega t)]}
总结
[
编辑
|
编辑源代码
]
RLC 串联在求解特征方程得到复根时,能够产生指数衰减正弦波振荡,即:
λ
<
0
{\displaystyle \lambda <0}
α
2
<
β
2
{\displaystyle \alpha ^{2}<\beta ^{2}}
(
R
2
L
)
2
<
(
1
L
C
)
2
{\displaystyle ({\frac {R}{2L}})^{2}<({\frac {1}{LC}})^{2}}
R
<
L
C
{\displaystyle R<{\sqrt {\frac {L}{C}}}}
类别
:
书籍: 电子学基础
华夏公益教科书