三个元件 R、L、C 串联连接的电路
在平衡状态下,电路的总电压为零
其中
当
该方程只有一个实根。
该方程有两个实根。
该方程有两个复根。
当频率分量相互抵消时发生谐振。因此,在谐振时
。 λ = 0. α 2 = β 2 . ( R 2 L ) 2 = ( 1 L C ) 2 {\displaystyle \lambda =0.\alpha ^{2}=\beta ^{2}.({\frac {R}{2L}})^{2}=({\frac {1}{LC}})^{2}} I = e − α t = e ( − R 2 L ) t {\displaystyle I=e^{-}\alpha t=e^{(}-{\frac {R}{2L}})t}
。 λ = α 2 − β 2 > 0. α 2 > β 2 . ( R 2 L ) 2 > ( 1 L C ) 2 {\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}>0.\alpha ^{2}>\beta ^{2}.({\frac {R}{2L}})^{2}>({\frac {1}{LC}})^{2}} I = A ( e λ t + e − λ t ) {\displaystyle I=A(e^{\lambda }t+e^{-}\lambda t)}
。 λ = α 2 − β 2 < 0. α 2 < β 2 . ( R 2 L ) 2 ( 1 L C ) 2 {\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}<0.\alpha ^{2}<\beta ^{2}.({\frac {R}{2L}})^{2}({\frac {1}{LC}})^{2}} I = A ( e j λ t + e − j λ t ) {\displaystyle I=A(e^{j}\lambda t+e^{-}j\lambda t)}