跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
定积分
切换目录
工程手册/微积分/积分/指数函数
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
工程手册
|
微积分
∫
e
x
d
x
=
e
x
{\displaystyle \int e^{x}\;\mathrm {d} x=e^{x}}
∫
e
c
x
d
x
=
1
c
e
c
x
{\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}}
∫
a
c
x
d
x
=
1
c
⋅
ln
a
a
c
x
{\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\cdot \ln a}}a^{cx}}
对于
a
>
0
,
a
≠
1
{\displaystyle a>0,\ a\neq 1}
∫
x
e
c
x
d
x
=
e
c
x
c
2
(
c
x
−
1
)
{\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
=
(
∂
∂
c
)
n
e
c
x
c
{\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x=\left({\frac {\partial }{\partial c}}\right)^{n}{\frac {e^{cx}}{c}}}
∫
e
c
x
x
d
x
=
ln
|
x
|
+
∑
n
=
1
∞
(
c
x
)
n
n
⋅
n
!
{\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}
∫
e
c
x
x
n
d
x
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(for
n
≠
1
)
{\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
e
c
x
ln
x
d
x
=
1
c
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
{\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
{\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
{\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
{\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x}
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
{\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x}
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
{\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}}
∫
e
−
c
x
2
d
x
=
π
4
c
erf
(
c
x
)
{\displaystyle \int e^{-cx^{2}}\;\mathrm {d} x={\sqrt {\frac {\pi }{4c}}}{\mbox{erf}}({\sqrt {c}}x)}
(
erf
{\displaystyle {\mbox{erf}}}
是
误差函数
)
∫
x
e
−
c
x
2
d
x
=
−
1
2
c
e
−
c
x
2
{\displaystyle \int xe^{-cx^{2}}\;\mathrm {d} x=-{\frac {1}{2c}}e^{-cx^{2}}}
∫
1
σ
2
π
e
−
(
x
−
μ
)
2
/
2
σ
2
d
x
=
−
1
2
(
erf
−
x
+
μ
σ
2
)
{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;\mathrm {d} x=-{\frac {1}{2}}\left({\mbox{erf}}\,{\frac {-x+\mu }{\sigma {\sqrt {2}}}}\right)}
∫
e
x
2
d
x
=
e
x
2
(
∑
j
=
0
n
−
1
c
2
j
1
x
2
j
+
1
)
+
(
2
n
−
1
)
c
2
n
−
2
∫
e
x
2
x
2
n
d
x
valid for
n
>
0
,
{\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\quad {\mbox{valid for }}n>0,}
其中
c
2
j
=
1
⋅
3
⋅
5
⋯
(
2
j
−
1
)
2
j
+
1
=
(
2
j
)
!
j
!
2
2
j
+
1
.
{\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ .}
∫
x
x
⋅
⋅
x
⏟
m
d
x
=
∑
n
=
0
m
(
−
1
)
n
(
n
+
1
)
n
−
1
n
!
Γ
(
n
+
1
,
−
ln
x
)
+
∑
n
=
m
+
1
∞
(
−
1
)
n
a
m
n
Γ
(
n
+
1
,
−
ln
x
)
(for
x
>
0
)
{\displaystyle {\int \underbrace {x^{x^{\cdot ^{\cdot ^{x}}}}} _{m}\,dx=\sum _{n=0}^{m}{\frac {(-1)^{n}(n+1)^{n-1}}{n!}}\Gamma (n+1,-\ln x)+\sum _{n=m+1}^{\infty }(-1)^{n}a_{mn}\Gamma (n+1,-\ln x)\qquad {\mbox{(for }}x>0{\mbox{)}}}}
其中
a
m
n
=
{
1
if
n
=
0
,
1
n
!
if
m
=
1
,
1
n
∑
j
=
1
n
j
a
m
,
n
−
j
a
m
−
1
,
j
−
1
otherwise
{\displaystyle a_{mn}={\begin{cases}1&{\text{if }}n=0,\\{\frac {1}{n!}}&{\text{if }}m=1,\\{\frac {1}{n}}\sum _{j=1}^{n}ja_{m,n-j}a_{m-1,j-1}&{\text{otherwise}}\end{cases}}}
以及
Γ
(
x
,
y
)
{\displaystyle \Gamma (x,y)}
是
伽马函数
∫
1
a
e
λ
x
+
b
d
x
=
x
b
−
1
b
λ
ln
(
a
e
λ
x
+
b
)
{\displaystyle \int {\frac {1}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {x}{b}}-{\frac {1}{b\lambda }}\ln \left(ae^{\lambda x}+b\right)\,}
当
b
≠
0
{\displaystyle b\neq 0}
,
λ
≠
0
{\displaystyle \lambda \neq 0}
,并且
a
e
λ
x
+
b
>
0
.
{\displaystyle ae^{\lambda x}+b>0\,.}
∫
e
2
λ
x
a
e
λ
x
+
b
d
x
=
1
a
2
λ
[
a
e
λ
x
+
b
−
b
ln
(
a
e
λ
x
+
b
)
]
{\displaystyle \int {\frac {e^{2\lambda x}}{ae^{\lambda x}+b}}\;\mathrm {d} x={\frac {1}{a^{2}\lambda }}\left[ae^{\lambda x}+b-b\ln \left(ae^{\lambda x}+b\right)\right]\,}
当
a
≠
0
{\displaystyle a\neq 0}
,
λ
≠
0
{\displaystyle \lambda \neq 0}
,并且
a
e
λ
x
+
b
>
0
.
{\displaystyle ae^{\lambda x}+b>0\,.}
定积分
[
编辑
|
编辑源代码
]
∫
0
1
e
x
⋅
ln
a
+
(
1
−
x
)
⋅
ln
b
d
x
=
∫
0
1
(
a
b
)
x
⋅
b
d
x
=
∫
0
1
a
x
⋅
b
1
−
x
d
x
=
a
−
b
ln
a
−
ln
b
{\displaystyle \int _{0}^{1}e^{x\cdot \ln a+(1-x)\cdot \ln b}\;\mathrm {d} x=\int _{0}^{1}\left({\frac {a}{b}}\right)^{x}\cdot b\;\mathrm {d} x=\int _{0}^{1}a^{x}\cdot b^{1-x}\;\mathrm {d} x={\frac {a-b}{\ln a-\ln b}}}
对于
a
>
0
,
b
>
0
,
a
≠
b
{\displaystyle a>0,\ b>0,\ a\neq b}
,这是
对数平均数
∫
0
∞
e
a
x
d
x
=
1
a
(
a
<
0
)
{\displaystyle \int _{0}^{\infty }e^{ax}\,\mathrm {d} x={\frac {1}{a}}(a<0)}
∫
0
∞
e
−
a
x
2
d
x
=
1
2
π
a
(
a
>
0
)
{\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)}
(
高斯积分
)
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
(
a
>
0
)
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}\quad (a>0)}
∫
−
∞
∞
e
−
a
x
2
e
−
2
b
x
d
x
=
π
a
e
b
2
a
(
a
>
0
)
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{-2bx}\,\mathrm {d} x={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a}}\quad (a>0)}
(
高斯函数的积分
)
∫
−
∞
∞
x
e
−
a
(
x
−
b
)
2
d
x
=
b
π
a
{\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,\mathrm {d} x=b{\sqrt {\frac {\pi }{a}}}}
∫
−
∞
∞
x
2
e
−
a
x
2
d
x
=
1
2
π
a
3
(
a
>
0
)
{\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)}
∫
0
∞
x
n
e
−
a
x
2
d
x
=
{
1
2
Γ
(
n
+
1
2
)
/
a
n
+
1
2
(
n
>
−
1
,
a
>
0
)
(
2
k
−
1
)
!
!
2
k
+
1
a
k
π
a
(
n
=
2
k
,
k
integer
,
a
>
0
)
k
!
2
a
k
+
1
(
n
=
2
k
+
1
,
k
integer
,
a
>
0
)
{\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{2}}\,\mathrm {d} x={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{integer}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{integer}},a>0)\end{cases}}}
( !! 是
双阶乘
)
∫
0
∞
x
n
e
−
a
x
d
x
=
{
Γ
(
n
+
1
)
a
n
+
1
(
n
>
−
1
,
a
>
0
)
n
!
a
n
+
1
(
n
=
0
,
1
,
2
,
…
,
a
>
0
)
{\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,\mathrm {d} x={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}}
∫
0
∞
e
−
a
x
sin
b
x
d
x
=
b
a
2
+
b
2
(
a
>
0
)
{\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,\mathrm {d} x={\frac {b}{a^{2}+b^{2}}}\quad (a>0)}
∫
0
∞
e
−
a
x
cos
b
x
d
x
=
a
a
2
+
b
2
(
a
>
0
)
{\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,\mathrm {d} x={\frac {a}{a^{2}+b^{2}}}\quad (a>0)}
∫
0
∞
x
e
−
a
x
sin
b
x
d
x
=
2
a
b
(
a
2
+
b
2
)
2
(
a
>
0
)
{\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,\mathrm {d} x={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
∫
0
∞
x
e
−
a
x
cos
b
x
d
x
=
a
2
−
b
2
(
a
2
+
b
2
)
2
(
a
>
0
)
{\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,\mathrm {d} x={\frac {a^{2}-b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(
I
0
{\displaystyle I_{0}}
是第一类修正
贝塞尔函数
)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
(
x
2
+
y
2
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}
类别
:
书籍:工程手册
华夏公益教科书