跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
傅里叶变换
2
傅里叶逆变换
3
傅里叶变换表
切换目录
工程手册/数学/傅里叶变换
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
工程手册
|
数学
傅里叶变换
[
编辑
|
编辑源代码
]
F
(
j
ω
)
=
F
{
f
(
t
)
}
=
∫
−
∞
∞
f
(
t
)
e
−
j
ω
t
d
t
{\displaystyle F(j\omega )={\mathcal {F}}\left\{f(t)\right\}=\int _{-\infty }^{\infty }f(t)e^{-j\omega t}dt}
傅里叶逆变换
[
编辑
|
编辑源代码
]
F
−
1
{
F
(
j
ω
)
}
=
f
(
t
)
=
1
2
π
∫
−
∞
∞
F
(
j
ω
)
e
j
ω
t
d
ω
{\displaystyle {\mathcal {F}}^{-1}\left\{F(j\omega )\right\}=f(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }F(j\omega )e^{j\omega t}d\omega }
傅里叶变换表
[
编辑
|
编辑源代码
]
此表包含一些最常见的傅里叶变换。
时域
频域
x
(
t
)
=
F
−
1
{
X
(
ω
)
}
{\displaystyle x(t)={\mathcal {F}}^{-1}\left\{X(\omega )\right\}}
X
(
ω
)
=
F
{
x
(
t
)
}
{\displaystyle X(\omega )={\mathcal {F}}\left\{x(t)\right\}}
1
X
(
j
ω
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
ω
t
d
t
{\displaystyle X(j\omega )=\int _{-\infty }^{\infty }x(t)e^{-j\omega t}dt}
x
(
t
)
=
1
2
π
∫
−
∞
∞
X
(
ω
)
e
j
ω
t
d
ω
{\displaystyle x(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }X(\omega )e^{j\omega t}d\omega }
2
1
{\displaystyle 1\,}
2
π
δ
(
ω
)
{\displaystyle 2\pi \delta (\omega )\,}
3
−
0.5
+
u
(
t
)
{\displaystyle -0.5+u(t)\,}
1
j
ω
{\displaystyle {\frac {1}{j\omega }}\,}
4
δ
(
t
)
{\displaystyle \delta (t)\,}
1
{\displaystyle 1\,}
5
δ
(
t
−
c
)
{\displaystyle \delta (t-c)\,}
e
−
j
ω
c
{\displaystyle e^{-j\omega c}\,}
6
u
(
t
)
{\displaystyle u(t)\,}
π
δ
(
ω
)
+
1
j
ω
{\displaystyle \pi \delta (\omega )+{\frac {1}{j\omega }}\,}
7
e
−
b
t
u
(
t
)
(
b
>
0
)
{\displaystyle e^{-bt}u(t)\,(b>0)}
1
j
ω
+
b
{\displaystyle {\frac {1}{j\omega +b}}\,}
8
cos
ω
0
t
{\displaystyle \cos \omega _{0}t\,}
π
[
δ
(
ω
+
ω
0
)
+
δ
(
ω
−
ω
0
)
]
{\displaystyle \pi \left[\delta (\omega +\omega _{0})+\delta (\omega -\omega _{0})\right]\,}
9
cos
(
ω
0
t
+
θ
)
{\displaystyle \cos(\omega _{0}t+\theta )\,}
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
+
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle \pi \left[e^{-j\theta }\delta (\omega +\omega _{0})+e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
10
sin
ω
0
t
{\displaystyle \sin \omega _{0}t\,}
j
π
[
δ
(
ω
+
ω
0
)
−
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[\delta (\omega +\omega _{0})-\delta (\omega -\omega _{0})\right]\,}
11
sin
(
ω
0
t
+
θ
)
{\displaystyle \sin(\omega _{0}t+\theta )\,}
j
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
−
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[e^{-j\theta }\delta (\omega +\omega _{0})-e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
12
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
sinc
(
τ
ω
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau \omega }{2\pi }}\right)\,}
13
τ
sinc
(
τ
t
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau t}{2\pi }}\right)\,}
2
π
rect
(
ω
τ
)
{\displaystyle 2\pi {\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
14
(
1
−
2
|
t
|
τ
)
rect
(
t
τ
)
{\displaystyle \left(1-{\frac {2|t|}{\tau }}\right){\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
2
sinc
2
(
τ
ω
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau \omega }{4\pi }}\right)\,}
15
τ
2
sinc
2
(
τ
t
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau t}{4\pi }}\right)\,}
2
π
(
1
−
2
|
ω
|
τ
)
rect
(
ω
τ
)
{\displaystyle 2\pi \left(1-{\frac {2|\omega |}{\tau }}\right){\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
16
e
−
a
|
t
|
,
ℜ
{
a
}
>
0
{\displaystyle e^{-a|t|},\Re \{a\}>0\,}
2
a
a
2
+
ω
2
{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}\,}
注释
sinc
(
x
)
=
sin
(
π
x
)
/
(
π
x
)
{\displaystyle {\mbox{sinc}}(x)=\sin(\pi x)/(\pi x)}
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)}
是宽度为
τ
{\displaystyle \tau }
的矩形脉冲函数。
u
(
t
)
{\displaystyle u(t)}
是Heaviside阶跃函数。
δ
(
t
)
{\displaystyle \delta (t)}
是Dirac delta函数。
此框:
查看
•
讨论
•
编辑
类别
:
书籍:工程手册
华夏公益教科书