跳至内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
内容
移动到侧边栏
隐藏
开始
1
积分
切换积分小节
1.1
不定积分
1.2
定积分
2
参考文献
切换目录
工程手册/数学/积分
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
工程手册
|
数学
积分
[
编辑
|
编辑源代码
]
不定积分
[
编辑
|
编辑源代码
]
∫
f
(
x
)
d
x
{\displaystyle \int f(x)dx}
积分性质表
规则
条件
1
∫
a
d
x
=
a
x
{\displaystyle \int a\,dx=ax}
2
齐次性
∫
a
f
(
x
)
d
x
=
a
∫
f
(
x
)
d
x
{\displaystyle \int af(x)\,dx=a\int f(x)\,dx}
3
结合律
∫
(
f
±
g
±
h
±
⋯
)
d
x
=
∫
f
d
x
±
∫
g
d
x
±
∫
h
d
x
±
⋯
{\displaystyle \int {\left(f\pm g\pm h\pm \cdots \right)\,dx}=\int f\,dx\pm \int g\,dx\pm \int h\,dx\pm \cdots }
4
分部积分
∫
a
b
f
g
′
d
x
=
[
f
g
]
a
b
−
∫
a
b
g
f
′
d
x
{\displaystyle \int _{a}^{b}fg'\,dx=\left[fg\right]_{a}^{b}-\int _{a}^{b}gf'\,dx}
4
一般分部积分
∫
f
(
n
)
g
d
x
=
f
(
n
−
1
)
g
′
−
f
(
n
−
2
)
g
″
+
…
+
(
−
1
)
n
∫
f
g
(
n
)
d
x
{\displaystyle \int f^{(n)}g\,dx=f^{(n-1)}g'-f^{(n-2)}g''+\ldots +(-1)^{n}\int fg^{(n)}\,dx}
5
∫
f
(
a
x
)
d
x
=
1
a
∫
f
(
x
)
d
x
{\displaystyle \int f(ax)\,dx={\frac {1}{a}}\int f(x)\,dx}
6
换元法
∫
g
{
f
(
x
)
}
d
x
=
∫
g
(
u
)
d
x
d
u
d
u
=
∫
g
(
u
)
f
′
(
x
)
d
u
{\displaystyle \int g\{f(x)\}\,dx=\int g(u){\frac {dx}{du}}\,du=\int {\frac {g(u)}{f'(x)}}\,du}
u
=
f
(
x
)
{\displaystyle u=f(x)\,}
7
∫
x
n
d
x
=
x
n
+
1
n
+
1
{\displaystyle \int x^{n}\,dx={\frac {x^{n+1}}{n+1}}}
n
≠
−
1
{\displaystyle n\neq -1\,}
8
∫
1
x
d
x
=
ln
|
x
|
{\displaystyle \int {\frac {1}{x}}\,dx=\ln |x|}
9
∫
e
x
d
x
=
e
x
{\displaystyle \int e^{x}\,dx=e^{x}}
10
∫
a
x
d
x
=
a
x
ln
|
a
|
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln |a|}}}
a
≠
1
{\displaystyle a\neq 1}
说明
f, g, h
为
x
的函数
a, n
为常数。
本表格中省略了积分常数
C
。如果需要,应该在方程的运算过程中包含它。
此框:
查看
•
讨论
•
编辑
积分
值
备注
1
∫
c
d
x
{\displaystyle \int c\,dx}
c
x
+
C
{\displaystyle cx+C\,}
2
∫
x
n
d
x
{\displaystyle \int x^{n}\,dx}
x
n
+
1
n
+
1
+
C
{\displaystyle {\frac {x^{n+1}}{n+1}}+C}
n
≠
−
1
{\displaystyle n\neq -1}
3
∫
1
x
d
x
{\displaystyle \int {\frac {1}{x}}\,dx}
ln
|
x
|
+
C
{\displaystyle \ln {\left|x\right|}+C}
4
∫
1
a
2
+
x
2
d
x
{\displaystyle \int {1 \over {a^{2}+x^{2}}}\,dx}
1
a
arctan
x
a
+
C
{\displaystyle {1 \over a}\arctan {x \over a}+C}
5
∫
1
a
2
−
x
2
d
x
{\displaystyle \int {1 \over {\sqrt {a^{2}-x^{2}}}}\,dx}
arcsin
x
a
+
C
{\displaystyle \arcsin {x \over a}+C}
6
∫
−
1
a
2
−
x
2
d
x
{\displaystyle \int {-1 \over {\sqrt {a^{2}-x^{2}}}}\,dx}
arccos
x
a
+
C
{\displaystyle \arccos {x \over a}+C}
7
∫
1
x
x
2
−
a
2
d
x
{\displaystyle \int {1 \over x{\sqrt {x^{2}-a^{2}}}}\,dx}
1
a
arcsec
|
x
|
a
+
C
{\displaystyle {1 \over a}{\mbox{arcsec}}\,{|x| \over a}+C}
8
∫
ln
x
d
x
{\displaystyle \int \ln {x}\,dx}
x
ln
x
−
x
+
C
{\displaystyle x\ln {x}-x+C\,}
9
∫
log
b
x
d
x
{\displaystyle \int \log _{b}{x}\,dx}
x
log
b
x
−
x
log
b
e
+
C
{\displaystyle x\log _{b}{x}-x\log _{b}{e}+C\,}
10
∫
e
x
d
x
{\displaystyle \int e^{x}\,dx}
e
x
+
C
{\displaystyle e^{x}+C\,}
11
∫
a
x
d
x
{\displaystyle \int a^{x}\,dx}
a
x
ln
a
+
C
{\displaystyle {\frac {a^{x}}{\ln {a}}}+C}
12
∫
sin
x
d
x
{\displaystyle \int \sin {x}\,dx}
−
cos
x
+
C
{\displaystyle -\cos {x}+C\,}
13
∫
cos
x
d
x
{\displaystyle \int \cos {x}\,dx}
sin
x
+
C
{\displaystyle \sin {x}+C\,}
14
∫
tan
x
d
x
{\displaystyle \int \tan {x}\,dx}
−
ln
|
cos
x
|
+
C
{\displaystyle -\ln {\left|\cos {x}\right|}+C\,}
15
∫
cot
x
d
x
{\displaystyle \int \cot {x}\,dx}
ln
|
sin
x
|
+
C
{\displaystyle \ln {\left|\sin {x}\right|}+C\,}
16
∫
sec
x
d
x
{\displaystyle \int \sec {x}\,dx}
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \ln {\left|\sec {x}+\tan {x}\right|}+C\,}
17
∫
csc
x
d
x
{\displaystyle \int \csc {x}\,dx}
−
ln
|
csc
x
+
cot
x
|
+
C
{\displaystyle -\ln {\left|\csc {x}+\cot {x}\right|}+C\,}
18
∫
sec
2
x
d
x
{\displaystyle \int \sec ^{2}x\,dx}
tan
x
+
C
{\displaystyle \tan x+C\,}
19
∫
csc
2
<
−
cot
x
+
C
{\displaystyle -\cot x+C\,}
20
∫
sec
x
tan
x
d
x
{\displaystyle \int \sec {x}\,\tan {x}\,dx}
sec
x
+
C
{\displaystyle \sec {x}+C\,}
21
∫
csc
x
cot
x
d
x
{\displaystyle \int \csc {x}\,\cot {x}\,dx}
−
csc
x
+
C
{\displaystyle -\csc {x}+C\,}
22
∫
sin
2
x
d
x
{\displaystyle \int \sin ^{2}x\,dx}
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle {\frac {1}{2}}(x-\sin x\cos x)+C\,}
23
∫
cos
2
x
d
x
{\displaystyle \int \cos ^{2}x\,dx}
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle {\frac {1}{2}}(x+\sin x\cos x)+C\,}
24
∫
sin
n
x
d
x
{\displaystyle \int \sin ^{n}x\,dx}
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle -{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
25
∫
cos
n
x
d
x
{\displaystyle \int \cos ^{n}x\,dx}
−
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle -{\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
26
∫
arctan
x
d
x
{\displaystyle \int \arctan {x}\,dx}
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
{\displaystyle x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
27
∫
sinh
x
d
x
{\displaystyle \int \sinh x\,dx}
cosh
x
+
C
{\displaystyle \cosh x+C\,}
28
∫
cosh
x
d
x
{\displaystyle \int \cosh x\,dx}
sinh
x
+
C
{\displaystyle \sinh x+C\,}
29
∫
tanh
x
d
x
{\displaystyle \int \tanh x\,dx}
ln
|
cosh
x
|
+
C
{\displaystyle \ln |\cosh x|+C\,}
30
∫
csch
x
d
x
{\displaystyle \int {\mbox{csch}}\,x\,dx}
ln
|
tanh
x
2
|
+
C
{\displaystyle \ln \left|\tanh {x \over 2}\right|+C}
31
∫
sech
x
d
x
{\displaystyle \int {\mbox{sech}}\,x\,dx}
arctan
(
sinh
x
)
+
C
{\displaystyle \arctan(\sinh x)+C\,}
32
∫
coth
x
d
x
{\displaystyle \int \coth x\,dx}
ln
|
sinh
x
|
+
C
{\displaystyle \ln |\sinh x|+C\,}
定积分
[
编辑
|
编辑源代码
]
∫
a
b
f
(
x
)
,
d
x
{\displaystyle \int _{a}^{b}f(x),dx}
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
.
{\displaystyle \int _{a}^{b}f(x)\,dx=F(b)-F(a).}
此外,对于区间 (a, b) 内的每一个 x,
d
d
x
∫
a
x
f
(
t
)
d
t
=
f
(
x
)
.
{\displaystyle {\frac {d}{dx}}\int _{a}^{x}f(t)\,dt=f(x).}
参考资料
[
编辑
|
编辑源代码
]
积分
分类
:
书籍:工程手册
华夏公益教科书