序号 |
时域
|
拉普拉斯域
|
1
|
|
|
2
|
 |
|
3
|
 |
|
4
|
 |
|
5
|
 |
|
6
|
 |
|
7
|
 |
|
8
|
 |
|
9
|
 |
|
10
|
|
11
|
cos ( ω t ) u ( t ) {\displaystyle \cos(\omega t)u(t)\,}  |
s s 2 + ω 2 {\displaystyle {\frac {s}{s^{2}+\omega ^{2}}}}
|
12
|
sin ( ω t ) u ( t ) {\displaystyle \sin(\omega t)u(t)\,}  |
ω s 2 + ω 2 {\displaystyle {\frac {\omega }{s^{2}+\omega ^{2}}}}
|
13
|
cosh ( ω t ) u ( t ) {\displaystyle \cosh(\omega t)u(t)\,}  |
s s 2 − ω 2 {\displaystyle {\frac {s}{s^{2}-\omega ^{2}}}}
|
14
|
sinh ( ω t ) u ( t ) {\displaystyle \sinh(\omega t)u(t)\,}  |
ω s 2 − ω 2 {\displaystyle {\frac {\omega }{s^{2}-\omega ^{2}}}}
|
15
|
e a t cos ( ω t ) u ( t ) {\displaystyle e^{at}\cos(\omega t)u(t)\,}  |
s − a ( s − a ) 2 + ω 2 {\displaystyle {\frac {s-a}{(s-a)^{2}+\omega ^{2}}}}
|
16
|
e a t sin ( ω t ) u ( t ) {\displaystyle e^{at}\sin(\omega t)u(t)\,}  |
ω ( s − a ) 2 + ω 2 {\displaystyle {\frac {\omega }{(s-a)^{2}+\omega ^{2}}}}
|
17
|
1 2 ω 3 ( sin ω t − ω t cos ω t ) {\displaystyle {\frac {1}{2\omega ^{3}}}(\sin \omega t-\omega t\cos \omega t)}  |
1 ( s 2 + ω 2 ) 2 {\displaystyle {\frac {1}{(s^{2}+\omega ^{2})^{2}}}}
|
18
|
t 2 ω sin ω t {\displaystyle {\frac {t}{2\omega }}\sin \omega t}  |
s ( s 2 + ω 2 ) 2 {\displaystyle {\frac {s}{(s^{2}+\omega ^{2})^{2}}}}
|
19
|
1 2 ω ( sin ω t + ω t cos ω t ) {\displaystyle {\frac {1}{2\omega }}(\sin \omega t+\omega t\cos \omega t)}  |
s 2 ( s 2 + ω 2 ) 2 {\displaystyle {\frac {s^{2}}{(s^{2}+\omega ^{2})^{2}}}}
|