跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
工程表格/傅里叶变换性质
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移至侧边栏
隐藏
来自 Wikibooks,开放世界中的开放书籍
<
工程表格
信号
傅里叶变换
幺正,角频率
傅里叶变换
幺正,普通频率
备注
g
(
t
)
≡
{\displaystyle g(t)\!\equiv \!}
1
2
π
∫
−
∞
∞
G
(
ω
)
e
i
ω
t
d
ω
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!G(\omega )e^{i\omega t}d\omega \,}
G
(
ω
)
≡
{\displaystyle G(\omega )\!\equiv \!}
1
2
π
∫
−
∞
∞
g
(
t
)
e
−
i
ω
t
d
t
{\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }\!\!g(t)e^{-i\omega t}dt\,}
G
(
f
)
≡
{\displaystyle G(f)\!\equiv }
∫
−
∞
∞
g
(
t
)
e
−
i
2
π
f
t
d
t
{\displaystyle \int _{-\infty }^{\infty }\!\!g(t)e^{-i2\pi ft}dt\,}
1
a
⋅
g
(
t
)
+
b
⋅
h
(
t
)
{\displaystyle a\cdot g(t)+b\cdot h(t)\,}
a
⋅
G
(
ω
)
+
b
⋅
H
(
ω
)
{\displaystyle a\cdot G(\omega )+b\cdot H(\omega )\,}
a
⋅
G
(
f
)
+
b
⋅
H
(
f
)
{\displaystyle a\cdot G(f)+b\cdot H(f)\,}
线性
2
g
(
t
−
a
)
{\displaystyle g(t-a)\,}
e
−
i
a
ω
G
(
ω
)
{\displaystyle e^{-ia\omega }G(\omega )\,}
e
−
i
2
π
a
f
G
(
f
)
{\displaystyle e^{-i2\pi af}G(f)\,}
时域移位
3
e
i
a
t
g
(
t
)
{\displaystyle e^{iat}g(t)\,}
G
(
ω
−
a
)
{\displaystyle G(\omega -a)\,}
G
(
f
−
a
2
π
)
{\displaystyle G\left(f-{\frac {a}{2\pi }}\right)\,}
频域移位,2 的对偶
4
g
(
a
t
)
{\displaystyle g(at)\,}
1
|
a
|
G
(
ω
a
)
{\displaystyle {\frac {1}{|a|}}G\left({\frac {\omega }{a}}\right)\,}
1
|
a
|
G
(
f
a
)
{\displaystyle {\frac {1}{|a|}}G\left({\frac {f}{a}}\right)\,}
如果
|
a
|
{\displaystyle |a|\,}
很大,那么
g
(
a
t
)
{\displaystyle g(at)\,}
集中在 0 附近,而
1
|
a
|
G
(
ω
a
)
{\displaystyle {\frac {1}{|a|}}G\left({\frac {\omega }{a}}\right)\,}
会扩展和平坦化。
5
G
(
t
)
{\displaystyle G(t)\,}
g
(
−
ω
)
{\displaystyle g(-\omega )\,}
g
(
−
f
)
{\displaystyle g(-f)\,}
傅里叶变换的对偶性。源于交换
t
{\displaystyle t\,}
和
ω
{\displaystyle \omega \,}
的“哑”变量。
6
d
n
g
(
t
)
d
t
n
{\displaystyle {\frac {d^{n}g(t)}{dt^{n}}}\,}
(
i
ω
)
n
G
(
ω
)
{\displaystyle (i\omega )^{n}G(\omega )\,}
(
i
2
π
f
)
n
G
(
f
)
{\displaystyle (i2\pi f)^{n}G(f)\,}
傅里叶变换的广义导数性质
7
t
n
g
(
t
)
{\displaystyle t^{n}g(t)\,}
i
n
d
n
G
(
ω
)
d
ω
n
{\displaystyle i^{n}{\frac {d^{n}G(\omega )}{d\omega ^{n}}}\,}
(
i
2
π
)
n
d
n
G
(
f
)
d
f
n
{\displaystyle \left({\frac {i}{2\pi }}\right)^{n}{\frac {d^{n}G(f)}{df^{n}}}\,}
这是6的对偶
8
(
g
∗
h
)
(
t
)
{\displaystyle (g*h)(t)\,}
2
π
G
(
ω
)
H
(
ω
)
{\displaystyle {\sqrt {2\pi }}G(\omega )H(\omega )\,}
G
(
f
)
H
(
f
)
{\displaystyle G(f)H(f)\,}
g
∗
h
{\displaystyle g*h\,}
表示
g
{\displaystyle g\,}
和
h
{\displaystyle h\,}
的卷积——这条规则是卷积定理
9
g
(
t
)
h
(
t
)
{\displaystyle g(t)h(t)\,}
(
G
∗
H
)
(
ω
)
2
π
{\displaystyle (G*H)(\omega ) \over {\sqrt {2\pi }}\,}
(
G
∗
H
)
(
f
)
{\displaystyle (G*H)(f)\,}
这是8的对偶
10
对于一个纯实偶函数
g
(
t
)
{\displaystyle g(t)\,}
G
(
ω
)
{\displaystyle G(\omega )\,}
是一个纯实偶函数
G
(
f
)
{\displaystyle G(f)\,}
是一个纯实偶函数
11
对于一个纯实奇函数
g
(
t
)
{\displaystyle g(t)\,}
G
(
ω
)
{\displaystyle G(\omega )\,}
是一个纯虚奇函数
G
(
f
)
{\displaystyle G(f)\,}
是一个纯虚奇函数
分类
:
书籍:工程表格
华夏公益教科书