跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
工程表格/导数表
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移至侧边栏
隐藏
来自维基教科书,开放世界开放书籍
<
工程表格
维基百科
在
微分恒等式列表
中有相关信息
导数表
d
d
x
c
=
0
{\displaystyle {d \over dx}c=0}
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
d
d
x
c
x
=
c
{\displaystyle {d \over dx}cx=c}
d
d
x
|
x
|
=
x
|
x
|
=
sgn
x
,
x
≠
0
{\displaystyle {d \over dx}|x|={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}
d
d
x
x
c
=
c
x
c
−
1
{\displaystyle {d \over dx}x^{c}=cx^{c-1}}
其中
x
c
和
cx
c
−1
都有定义。
d
d
x
(
1
x
)
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d
d
x
(
1
x
c
)
=
d
d
x
(
x
−
c
)
=
−
c
x
c
+
1
{\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-{c \over x^{c+1}}}
d
d
x
x
=
d
d
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
{\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}}}
x
> 0
d
d
x
c
x
=
c
x
ln
c
{\displaystyle {d \over dx}c^{x}={c^{x}\ln c}}
c
> 0
d
d
x
e
x
=
e
x
{\displaystyle {d \over dx}e^{x}=e^{x}}
d
d
x
log
c
x
=
1
x
ln
c
{\displaystyle {d \over dx}\log _{c}x={1 \over x\ln c}}
c
> 0,
c
≠ 1
d
d
x
ln
x
=
1
x
{\displaystyle {d \over dx}\ln x={1 \over x}}
d
d
x
sin
x
=
cos
x
{\displaystyle {d \over dx}\sin x=\cos x}
d
d
x
cos
x
=
−
sin
x
{\displaystyle {d \over dx}\cos x=-\sin x}
d
d
x
tan
x
=
sec
2
x
{\displaystyle {d \over dx}\tan x=\sec ^{2}x}
d
d
x
sec
x
=
tan
x
sec
x
{\displaystyle {d \over dx}\sec x=\tan x\sec x}
d
d
x
cot
x
=
−
csc
2
x
{\displaystyle {d \over dx}\cot x=-\csc ^{2}x}
d
d
x
csc
x
=
−
csc
x
cot
x
{\displaystyle {d \over dx}\csc x=-\csc x\cot x}
d
d
x
arcsin
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\arcsin x={1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {d \over dx}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arctan
x
=
1
1
+
x
2
{\displaystyle {d \over dx}\arctan x={1 \over 1+x^{2}}}
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arcsec} x={1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
arccot
x
=
−
1
1
+
x
2
{\displaystyle {d \over dx}\operatorname {arccot} x={-1 \over 1+x^{2}}}
d
d
x
arccsc
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arccsc} x={-1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
sinh
x
=
cosh
x
{\displaystyle {d \over dx}\sinh x=\cosh x}
d
d
x
cosh
x
=
sinh
x
{\displaystyle {d \over dx}\cosh x=\sinh x}
d
d
x
tanh
x
=
sech
2
x
{\displaystyle {d \over dx}\tanh x=\operatorname {sech} ^{2}x}
d
d
x
sech
x
=
−
tanh
x
sech
x
{\displaystyle {d \over dx}\operatorname {sech} x=-\tanh x\operatorname {sech} x}
d
d
x
coth
x
=
−
csch
2
x
{\displaystyle {d \over dx}\operatorname {coth} x=-\operatorname {csch} ^{2}x}
d
d
x
csch
x
=
−
coth
x
csch
x
{\displaystyle {d \over dx}\operatorname {csch} x=-\operatorname {coth} x\operatorname {csch} x}
d
d
x
arsinh
x
=
1
x
2
+
1
{\displaystyle {d \over dx}\operatorname {arsinh} x={1 \over {\sqrt {x^{2}+1}}}}
d
d
x
arcosh
x
=
1
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arcosh} x={1 \over {\sqrt {x^{2}-1}}}}
d
d
x
artanh
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\operatorname {artanh} x={1 \over 1-x^{2}}}
d
d
x
arsech
x
=
1
x
1
−
x
2
{\displaystyle {d \over dx}\operatorname {arsech} x={1 \over x{\sqrt {1-x^{2}}}}}
d
d
x
arcoth
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\operatorname {arcoth} x={1 \over 1-x^{2}}}
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {d \over dx}\operatorname {arcsch} x={-1 \over |x|{\sqrt {1+x^{2}}}}}
类别
:
书籍:工程表格
华夏公益教科书