跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
工程表格/Z 变换性质
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移到侧边栏
隐藏
来自维基教科书,开放的书籍,为开放的世界
<
工程表格
时域
Z 域
ROC
符号
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}}
X
(
z
)
=
Z
{
x
[
n
]
}
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}}
ROC:
r
2
<
|
z
|
<
r
1
{\displaystyle r_{2}<|z|<r_{1}\ }
线性
a
1
x
1
[
n
]
+
a
2
x
2
[
n
]
{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]\ }
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)\ }
至少 ROC
1
和 ROC
2
的交集
时间移位
x
[
n
−
k
]
{\displaystyle x[n-k]\ }
z
−
k
X
(
z
)
{\displaystyle z^{-k}X(z)\ }
ROC,除了
z
=
0
{\displaystyle z=0\ }
如果
k
>
0
{\displaystyle k>0\,}
和
z
=
∞
{\displaystyle z=\infty }
如果
k
<
0
{\displaystyle k<0\ }
Z 域的缩放
a
n
x
[
n
]
{\displaystyle a^{n}x[n]\ }
X
(
a
−
1
z
)
{\displaystyle X(a^{-1}z)\ }
|
a
|
r
2
<
|
z
|
<
|
a
|
r
1
{\displaystyle |a|r_{2}<|z|<|a|r_{1}\ }
时间反转
x
[
−
n
]
{\displaystyle x[-n]\ }
X
(
z
−
1
)
{\displaystyle X(z^{-1})\ }
1
r
2
<
|
z
|
<
1
r
1
{\displaystyle {\frac {1}{r_{2}}}<|z|<{\frac {1}{r_{1}}}\ }
共轭
x
∗
[
n
]
{\displaystyle x^{*}[n]\ }
X
∗
(
z
∗
)
{\displaystyle X^{*}(z^{*})\ }
ROC
实部
Re
{
x
[
n
]
}
{\displaystyle \operatorname {Re} \{x[n]\}\ }
1
2
[
X
(
z
)
+
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
ROC
虚部
Im
{
x
[
n
]
}
{\displaystyle \operatorname {Im} \{x[n]\}\ }
1
2
j
[
X
(
z
)
−
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]}
ROC
微分
n
x
[
n
]
{\displaystyle nx[n]\ }
−
z
d
X
(
z
)
d
z
{\displaystyle -z{\frac {\mathrm {d} X(z)}{\mathrm {d} z}}}
ROC
卷积
x
1
[
n
]
∗
x
2
[
n
]
{\displaystyle x_{1}[n]*x_{2}[n]\ }
X
1
(
z
)
X
2
(
z
)
{\displaystyle X_{1}(z)X_{2}(z)\ }
至少 ROC
1
和 ROC
2
的交集
相关性
r
x
1
,
x
2
(
l
)
=
x
1
[
l
]
∗
x
2
[
−
l
]
{\displaystyle r_{x_{1},x_{2}}(l)=x_{1}[l]*x_{2}[-l]\ }
R
x
1
,
x
2
(
z
)
=
X
1
(
z
)
X
2
(
z
−
1
)
{\displaystyle R_{x_{1},x_{2}}(z)=X_{1}(z)X_{2}(z^{-1})\ }
至少在 X
1
(z) 和 X
2
(
z
−
1
{\displaystyle z^{-1}}
) 的 ROC 交集处
乘法
x
1
[
n
]
x
2
[
n
]
{\displaystyle x_{1}[n]x_{2}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
(
z
v
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ }
至少
r
1
l
r
2
l
<
|
z
|
<
r
1
u
r
2
u
{\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ }
帕塞瓦尔定理
∑
∞
x
1
[
n
]
x
2
∗
[
n
]
{\displaystyle \sum ^{\infty }x_{1}[n]x_{2}^{*}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
∗
(
1
v
∗
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ }
初始值定理
x
[
0
]
=
lim
z
→
∞
X
(
z
)
{\displaystyle x[0]=\lim _{z\rightarrow \infty }X(z)\ }
,如果
x
[
n
]
{\displaystyle x[n]\,}
为因果信号
最终值定理
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
{\displaystyle x[\infty ]=\lim _{z\rightarrow 1}(z-1)X(z)\ }
,只有当
(
z
−
1
)
X
(
z
)
{\displaystyle (z-1)X(z)\ }
的极点都在单位圆内时
类别
:
书籍: 工程表格
华夏公益教科书