GLPK/背包问题
外观
< GLPK
背包问题可以定义如下:给定一组大小为 的物品 和利润 ,选择一个子集,这些子集适合容量 并且最大化所选物品的总利润。
最大化 | |
受制于 |
背包问题属于 NP-hard 问题类 [1]。
解决背包问题的一种常用方法是通过 动态规划 (DP)。下面的示例展示了如何将背包问题公式化为在 GMPL (MathProg) 中实现的混合整数规划 (MIP)。
# en.wikipedia.org offers the following definition: # The knapsack problem or rucksack problem is a problem in combinatorial optimization: # Given a set of items, each with a weight and a value, determine the number of each # item to include in a collection so that the total weight is less than a given limit # and the total value is as large as possible. # # This file shows how to model a knapsack problem in GMPL. # Size of knapsack param c; # Items: index, size, profit set I, dimen 3; # Indices set J := setof{(i,s,p) in I} i; # Assignment var a{J}, binary; maximize obj : sum{(i,s,p) in I} p*a[i]; s.t. size : sum{(i,s,p) in I} s*a[i] <= c; solve; printf "The knapsack contains:\n"; printf {(i,s,p) in I: a[i] == 1} " %i", i; printf "\n"; data; # Size of the knapsack param c := 100; # Items: index, size, profit set I := 1 10 10 2 10 10 3 15 15 4 20 20 5 20 20 6 24 24 7 24 24 8 50 50; end;
现在使用 GLPSOL 保存并运行此模型(在 Intel Core i5 处理器上花费 1 秒)。
$ glpsol --math knapsack.mod
得到
The knapsack contains: 2 4 5 8
- ↑ Kellerer, Hans; Pferschy, Ulrich; Pferschy, David (2004). Knapsack Problems. Springer-Verlag. ISBN 3-540-40286-1.