GLPK/可缩放矢量图形
外观
< GLPK
可缩放矢量图形 (SVG) 是一种 XML 文件格式,用于描述二维图形。 SVG 1.1 是规范的最新版本。
只需一点努力,MathProgprintf语句可用于生成 SVG 代码。
在 旅行商问题 中的任务是找到通过给定城市集的最短循环路径,每个城市只访问一次,然后返回起点。
以下模型展示了如何将解决方案输出为可缩放矢量图形。
################################################################### # This file demonstrates output to a scalable vector graphic (SVG). # # Solve with option --nomip to see the difference # # Traveling salesman problem # ################################################################### # output file param filename, symbolic := "out.svg"; # number of cities param n := 35; # set of cities set N := {1..n}; # set of bidirectional arcs set E := setof{(i,j) in N cross N : i > j} (i,j); # set of unidirectional arcs set F := setof{(i,j) in N cross N : i != j} (i,j); # random locations for the cities param cx{i in N} := Uniform01(); param cy{i in N} := Uniform01(); #sum of x- and y- distance #param d{(i,j) in E} := abs(cx[i]-cx[j])+abs(cy[i]-cy[j]); #maximum of x- and y- distance #param d{(i,j) in E} := max(abs(cx[i]-cx[j]),abs(cy[i]-cy[j])); #euclidean distance param d{(i,j) in E} := sqrt((cx[i]-cx[j])^2+(cy[i]-cy[j])^2); # connection var x{(i,j) in E}, >=0, <= 1, binary; # flow var f{(i,j) in F}, >= 0; # Objective minimize dist : sum{(i,j) in E} x[i,j] * d[i,j]; # Every city must have two connections for a round trip s.t. two{ i in N } : sum{j in N : i > j} x[i,j] + sum{j in N : i < j} x[j,i] = 2; # The following constraints force the graph to be connected # Flow is controlled by binaries s.t. flow1 {(i,j) in F} : f[i,j] <= (if (i==1) then n else n-1) * (if (i < j) then x[j,i] else x[i,j]); # One unit is consumed in each node s.t. flow2 {i in N} : sum{(i,j) in F} (f[i,j]-f[j,i]) <= if (i==1) then n-1 else -1; # There must be flow into every node s.t. flow3 { i in N } : sum{(i,j) in F} f[j,i] >= 1; solve; # Output the solution as scalable vector graphic # write header printf "<?xml version=""1.0"" standalone=""no""?>\n" > filename; printf "<!DOCTYPE svg PUBLIC ""-//W3C//DTD SVG 1.1//EN"" \n" >> filename; printf """http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"">\n" >> filename; printf "<svg width=""100\%"" height=""100\%"" version=""1.0"" \n" >> filename; printf "xmlns=""http://www.w3.org/2000/svg"">\n" >> filename; # draw circles for cities for {i in N} printf "<circle cx=""%f"" cy=""%f"" r=""5"" stroke=""black"" stroke-width=" & """2"" fill=""red""/>\n", cx[i] * 500, cy[i] * 500 >> filename; # draw solid black lines for integer connections for {(i,j) in E : x[i,j] == 1} printf "<line x1=""%f"" y1=""%f"" x2=""%f"" y2=""%f""" & " style=""stroke:black;stroke-width:2""/>\n", cx[i] * 500, cy[i] * 500, cx[j] * 500, cy[j] * 500 >> filename; # draw dashed red lines for fractional connections for {(i,j) in E : x[i,j] > 0 && x[i,j] < 1} { printf "<line x1=""%f"" y1=""%f"" x2=""%f"" y2=""%f""", cx[i] * 500, cy[i] * 500, cx[j] * 500, cy[j] * 500 >> filename; printf " style=""stroke:red;stroke-dasharray: 3 3;stroke-width:2""/>\n" >> filename; } printf "</svg>\n" >> filename; end;
运行模型(在 Intel Core i5 处理器上运行 40 秒)
$ glpsol --math traveling.mod
这就是创建的输出文件out.svg看起来像(删除了一些行)
<?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="100%" height="100%" version="1.0" xmlns="http://www.w3.org/2000/svg"> <circle cx="14.843435" cy="64.155902" r="5" stroke="black" stroke-width="2" fill="red"/> <circle cx="276.895963" cy="4.798338" r="5" stroke="black" stroke-width="2" fill="red"/> ... <line x1="103.248022" y1="381.131207" x2="127.779724" y2="409.131953" style="stroke:black;stroke-width:2"/> <line x1="103.248022" y1="381.131207" x2="96.365578" y2="282.627837" style="stroke:black;stroke-width:2"/> </svg>
生成的可以在最新的网络浏览器中查看(例如 Firefox 3.6 或 Internet Explorer 9)或使用(跨平台)SVG 编辑器(例如 Inkscape)进行查看和修改。
下面的示例涉及一个聚类问题。从 500 个城镇中选出 20 个作为聚类中心,并将其他城镇分配到聚类中,以使城镇与中心之间的总人口加权欧几里德距离最小化。
# Output file param f, symbolic := "ct.svg"; # Centers param nc := 20; set C := {1 .. nc}; # Towns param nt := 500; set T := {1 .. nt}; param xt{T} := Uniform01(); param yt{T} := Uniform01(); param pt{T} := ceil(1000 * Uniform01()); # Image size param scale := 1000; # Colors # saturation [0, 255] param sat := 192; param hue{c in C} := 6 * (c - 1) / nc; param red{c in C} := if hue[c] <= 1 or hue[c] >= 5 then 255 else (if hue[c] >=2 and hue[c] <= 4 then 255 - sat else (if hue[c] <=2 then 255 - sat + sat * (2-hue[c]) else 255 - sat + sat * (hue[c]-4) )); param green{c in C} := if hue[c] >= 1 and hue[c] <= 3 then 255 else (if hue[c] >= 4 then 255 - sat else (if hue[c] <=1 then 255 - sat + sat * hue[c] else 255 - sat + sat * (4-hue[c]) )); param blue{c in C} := if hue[c] >= 3 and hue[c] <= 5 then 255 else (if hue[c] <=2 then 255 - sat else (if hue[c] <=3 then 255 - sat + sat * (hue[c]-2) else 255 - sat + sat * (6-hue[c]) )); var x{T,T}, binary; minimize obj : sum{c in T, t in T : c != t} x[c,t] * pt[t] * sqrt((xt[c] - xt[t])^2 + (yt[c] - yt[t])^2); s.t. cc : sum{c in T} x[c,c] = nc; s.t. ct{c in T, t in T : c != t} : x[c,t] <= x[c,c]; s.t. tc{t in T} : sum{c in T} x[c,t] = 1; solve; for {c in T : x[c,c] > .5} { printf "Center %5.4f %5.4f\n", xt[c], yt[c]; for {t in T : x[c,t] > .5} { printf " Town %5.4f %5.4f (%5.0f)\n", xt[t], yt[t], pt[t]; } } # Output the solution as scalable vector graphic # header printf "<?xml version=""1.0"" standalone=""no""?>\n" > f; printf "<!DOCTYPE svg PUBLIC ""-//W3C//DTD SVG 1.1//EN"" \n" >> f; printf """http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"">\n" >> f; printf "<svg width=""%d"" height=""%d"" version=""1.0"" \n", 1.2 * scale, 1.2 * scale >> f; printf "xmlns=""http://www.w3.org/2000/svg"">\n" >> f; # background printf "<rect x=""0"" y=""0"" width=""%d"" height=""%d""" & " stroke=""none"" fill=""white""/>\n", 1.2 * scale, 1.2 * scale>> f; # border printf "<rect x=""%d"" y=""%d"" width=""%d"" height=""%d""" & " stroke=""black"" stroke-width="".5"" fill=""white""/>\n", .1 * scale, .1 * scale, scale, scale >> f; # circles for towns for {t in T} printf {s in T, c in C : x[s,t] > .5 && c = floor( .5 + sum{u in T : u <= s} x[u,u])} "<circle cx=""%f"" cy=""%f"" r=""%f"" stroke=""black"" " & "stroke-width=""1"" fill=""rgb(%d,%d,%d)""/>\n", (.1 + xt[t]) * scale, (.1 + yt[t]) * scale, .007 * sqrt(pt[t]/nt) * scale, red[c], green[c] , blue[c] >> f; # lines from towns to assigned centers for {t in T, c in T : x[c,t] > .5} printf "<line x1=""%f"" y1=""%f"" x2=""%f"" y2=""%f""" & " style=""stroke:black;stroke-width:.5""/>\n", (.1 + xt[c]) * scale, (.1 + yt[c]) * scale, (.1 + xt[t]) * scale, (.1 + yt[t]) * scale >> f; printf "</svg>\n" >> f; end;