定义(第二可数) :
令     X      {\displaystyle X}         X      {\displaystyle X}     第二可数 当且仅当     X      {\displaystyle X}     
 
由于可数集的子集是可数的,并且开邻域生成     N  (  x  )      {\displaystyle N(x)}     
命题 () :
第二可数空间是可分的
(在可数选择公理的条件下。)
 
证明: 令     (   U   n       )   n  ∈   N            {\displaystyle (U_{n})_{n\in \mathbb {N} }}         X      {\displaystyle X}          x   n      ∈   U   n          {\displaystyle x_{n}\in U_{n}}         S  :=  {   x   n       |    n  ∈   N    }      {\displaystyle S:=\{x_{n}|n\in \mathbb {N} \}}         ◻      {\displaystyle \Box }     
证明:  拓扑空间     X      {\displaystyle X}         (   U   n       )   n  ∈   N            {\displaystyle (U_{n})_{n\in \mathbb {N} }}         S      {\displaystyle S}         (  S  ∩   U   n       )   n  ∈   N            {\displaystyle (S\cap U_{n})_{n\in \mathbb {N} }}         ◻      {\displaystyle \Box }     
命题 () :
连续函数到豪斯多夫空间,其值由稠密子空间唯一确定
 
Proof:  Let     x  ∈  X      {\displaystyle x\in X}         V  ⊆  Y      {\displaystyle V\subseteq Y}         G  (  x  )      {\displaystyle G(x)}         G      {\displaystyle G}         U      {\displaystyle U}         x      {\displaystyle x}         V      {\displaystyle V}          V  ′        {\displaystyle V'}         F  (  x  )      {\displaystyle F(x)}          U  ′        {\displaystyle U'}          V  ′        {\displaystyle V'}         U  ∩   U  ′        {\displaystyle U\cap U'}         V  ∩   V  ′        {\displaystyle V\cap V'}         F  (  x  )  ,  G  (  x  )  ⊆  V  ∩   V  ′        {\displaystyle F(x),G(x)\subseteq V\cap V'}         V      {\displaystyle V}         G  (  x  )      {\displaystyle G(x)}          V  ′        {\displaystyle V'}         F  (  x  )      {\displaystyle F(x)}         F  (  x  )  ≠  G  (  x  )      {\displaystyle F(x)\neq G(x)}         V  ∩   V  ′    =  ∅      {\displaystyle V\cap V'=\emptyset }         V  ,   V  ′        {\displaystyle V,V'}         G  (  x  )  ∈  V  ∩   V  ′        {\displaystyle G(x)\in V\cap V'}         F  (  x  )  =  G  (  x  )      {\displaystyle F(x)=G(x)}         x      {\displaystyle x}         ◻      {\displaystyle \Box }