定义(第二可数) :
令 X {\displaystyle X} 为拓扑空间。 X {\displaystyle X} 被称为第二可数 当且仅当 X {\displaystyle X} 的拓扑有可数基。
由于可数集的子集是可数的,并且开邻域生成 N ( x ) {\displaystyle N(x)} ,所以第二可数蕴含第一可数。
命题 () :
第二可数空间是可分的
(在可数选择公理的条件下。)
证明: 令 ( U n ) n ∈ N {\displaystyle (U_{n})_{n\in \mathbb {N} }} 为 X {\displaystyle X} 拓扑的基,并选择 x n ∈ U n {\displaystyle x_{n}\in U_{n}} 。那么 S := { x n | n ∈ N } {\displaystyle S:=\{x_{n}|n\in \mathbb {N} \}} 是可数且稠密的。 ◻ {\displaystyle \Box }
证明: 拓扑空间 X {\displaystyle X} 的任何可数基 ( U n ) n ∈ N {\displaystyle (U_{n})_{n\in \mathbb {N} }} 会在子空间 S {\displaystyle S} 上诱导出一个可数基 ( S ∩ U n ) n ∈ N {\displaystyle (S\cap U_{n})_{n\in \mathbb {N} }} 。 ◻ {\displaystyle \Box }
命题 () :
连续函数到豪斯多夫空间,其值由稠密子空间唯一确定
Proof: Let x ∈ X {\displaystyle x\in X} be arbitrary, and let V ⊆ Y {\displaystyle V\subseteq Y} be any neighbourhood of G ( x ) {\displaystyle G(x)} . By continuity of G {\displaystyle G} we may find a neighbourhood U {\displaystyle U} of x {\displaystyle x} that is mapped completely into V {\displaystyle V} . Analogously, whenever V ′ {\displaystyle V'} is a neighbourhood of F ( x ) {\displaystyle F(x)} , we find a neighbourhood U ′ {\displaystyle U'} mapping completely into V ′ {\displaystyle V'} . Then U ∩ U ′ {\displaystyle U\cap U'} is mapped completely into V ∩ V ′ {\displaystyle V\cap V'} , so that F ( x ) , G ( x ) ⊆ V ∩ V ′ {\displaystyle F(x),G(x)\subseteq V\cap V'} for any open neighbourhoods V {\displaystyle V} of G ( x ) {\displaystyle G(x)} and V ′ {\displaystyle V'} of F ( x ) {\displaystyle F(x)} . If F ( x ) ≠ G ( x ) {\displaystyle F(x)\neq G(x)} , then V ∩ V ′ = ∅ {\displaystyle V\cap V'=\emptyset } for suitable V , V ′ {\displaystyle V,V'} as above by the Hausdorff condition, a contradiction to G ( x ) ∈ V ∩ V ′ {\displaystyle G(x)\in V\cap V'} . Hence, F ( x ) = G ( x ) {\displaystyle F(x)=G(x)} . Since x {\displaystyle x} was arbitrary, we conclude. ◻ {\displaystyle \Box }