跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
简介
2
技巧
3
实例
4
恒等式
5
应用
切换目录
图论/二项式系数的杂耍
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,开放的世界
<
图论
简介
[
编辑
|
编辑源代码
]
熟练掌握二项式系数对于关于图的组合论证非常有帮助。你应该像熟练运用普通代数方程一样熟练地运用二项式系数。
技巧
[
编辑
|
编辑源代码
]
在一般方程中代入特定值,例如在以下方程中仔细选择 x 和 y:
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
.
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}.}
使用递归公式的“大锤”证明。你可能会发现通过帕斯卡三角形的图“跟踪”二项式系数很有帮助。
对先前恒等式进行微分以得到新的恒等式。
关于排列和组合的组合论证。
实例
[
编辑
|
编辑源代码
]
示例:2
n
要得到
∑
k
=
0
n
(
n
k
)
=
2
n
{\displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}=2^{n}}
在
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
.
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}.}
恒等式
[
编辑
|
编辑源代码
]
(
n
k
)
=
(
n
n
−
k
)
{\displaystyle {\binom {n}{k}}={\binom {n}{n-k}}}
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
{\displaystyle {\binom {n}{k}}={\frac {n}{k}}{\binom {n-1}{k-1}}}
(
n
−
1
k
)
−
(
n
−
1
k
−
1
)
=
n
−
2
k
n
(
n
k
)
.
{\displaystyle {\binom {n-1}{k}}-{\binom {n-1}{k-1}}={\frac {n-2k}{n}}{\binom {n}{k}}.}
(
n
k
)
=
(
n
−
1
k
−
1
)
+
(
n
−
1
k
)
{\displaystyle {n \choose k}={n-1 \choose k-1}+{n-1 \choose k}}
∑
k
=
0
n
(
n
k
)
2
=
(
2
n
n
)
.
{\displaystyle \displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}^{2}={\tbinom {2n}{n}}.}
∑
k
=
0
n
(
n
k
)
(
n
n
−
k
)
=
(
2
n
n
)
.
{\displaystyle \displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}{\tbinom {n}{n-k}}={\tbinom {2n}{n}}.}
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
{\displaystyle \sum _{k=0}^{n}k{\tbinom {n}{k}}=n2^{n-1}}
∑
k
=
0
n
k
2
(
n
k
)
=
(
n
+
n
2
)
2
n
−
2
{\displaystyle \sum _{k=0}^{n}k^{2}{\tbinom {n}{k}}=(n+n^{2})2^{n-2}}
∑
m
=
0
n
(
m
j
)
(
n
−
m
k
−
j
)
=
(
n
+
1
k
+
1
)
{\displaystyle \sum _{m=0}^{n}{\tbinom {m}{j}}{\tbinom {n-m}{k-j}}={\tbinom {n+1}{k+1}}}
∑
m
=
0
n
(
m
k
)
=
(
n
+
1
k
+
1
)
.
{\displaystyle \sum _{m=0}^{n}{\tbinom {m}{k}}={\tbinom {n+1}{k+1}}\,.}
∑
k
=
0
⌊
n
2
⌋
(
n
−
k
k
)
=
F
(
n
+
1
)
{\displaystyle \sum _{k=0}^{\lfloor {\frac {n}{2}}\rfloor }{\tbinom {n-k}{k}}=F(n+1)}
其中,
F
(
n
) 表示第
n
个
斐波那契数
。
∑
j
=
k
n
(
j
k
)
=
(
n
+
1
k
+
1
)
{\displaystyle \sum _{j=k}^{n}{\tbinom {j}{k}}={\tbinom {n+1}{k+1}}}
∑
j
=
0
k
(
−
1
)
j
(
n
j
)
=
(
−
1
)
k
(
n
−
1
k
)
{\displaystyle \sum _{j=0}^{k}(-1)^{j}{\tbinom {n}{j}}=(-1)^{k}{\tbinom {n-1}{k}}}
∑
j
=
0
n
(
−
1
)
j
(
n
j
)
=
0
{\displaystyle \sum _{j=0}^{n}(-1)^{j}{\tbinom {n}{j}}=0}
∑
i
=
0
n
i
(
n
i
)
2
=
n
2
(
2
n
n
)
{\displaystyle \sum _{i=0}^{n}{i{\binom {n}{i}}^{2}}={\frac {n}{2}}{\binom {2n}{n}}}
∑
i
=
0
n
i
2
(
n
i
)
2
=
n
2
(
2
n
−
2
n
−
1
)
{\displaystyle \sum _{i=0}^{n}{i^{2}{\binom {n}{i}}^{2}}=n^{2}{\binom {2n-2}{n-1}}}
.
∑
k
=
q
n
(
n
k
)
(
k
q
)
=
2
n
−
q
(
n
q
)
{\displaystyle \sum _{k=q}^{n}{\tbinom {n}{k}}{\tbinom {k}{q}}=2^{n-q}{\tbinom {n}{q}}}
应用
[
编辑
|
编辑源代码
]
找到排列中特定长度的循环的概率。
分类
:
图书: 图论
华夏公益教科书