sin u = ( 1 csc u ) {\displaystyle \sin u=\left({\frac {1}{\csc u}}\right)}
tan u = ( 1 c o t u ) {\displaystyle \tan u=\left({\frac {1}{\ cotu}}\right)}
sec u = ( 1 cos u ) {\displaystyle \sec u=\left({\frac {1}{\cos u}}\right)}
sin 2 u + cos 2 u = 1 {\displaystyle \sin ^{2}u+\cos ^{2}u=1}
1 + tan 2 u = sec 2 {\displaystyle 1+\tan ^{2}u=\sec ^{2}}
1 + cot 2 u = csc 2 u {\displaystyle 1+\cot ^{2}u=\csc ^{2}u}
tan u = ( sin u cos u ) {\displaystyle \tan u=\left({\frac {\sin u}{\cos u}}\right)}
sin ( ( π 2 ) − u ) = cos u {\displaystyle \sin(\left({\frac {\pi }{2}}\right)-u)=\cos u}
tan ( ( π 2 ) − u ) = cot u {\displaystyle \tan(\left({\frac {\pi }{2}}\right)-u)=\cot u}
sec ( ( π 2 ) − u ) = csc u {\displaystyle \sec(\left({\frac {\pi }{2}}\right)-u)=\csc u}
sin ( − u ) = − sin ( u ) {\displaystyle \sin(-u)=-\sin(u)}
tan ( − u ) = − tan ( u ) {\displaystyle \tan(-u)=-\tan(u)}
sec ( − u ) = sec ( u ) {\displaystyle \sec(-u)=\sec(u)}
本材料改编自可在此处找到的原始CK-12书籍。此作品根据知识共享署名-相同方式共享3.0美国许可发布。