算术、物理学和数学;或度量单位  的初步提纲
物理学和数学从计数开始1 个苹果,2 个苹果,等等。 
因此,我们记录中的“苹果”是一个度量单位 ,所讨论的数量是“苹果数量”。  
这演变成简单的算术1 个苹果加 1 个苹果等于 2 个苹果 
30 个苹果减去 10 个苹果等于 20 个苹果  
引入简写符号    1  a  p  p  l  e  +  1  a  p  p  l  e  =  2  a  p  p  l  e  s      {\displaystyle 1\;apple+1\;apple=2\;apples}         30  a  p  p  l  e  s  −  10  a  p  p  l  e  s  =  20  a  p  p  l  e  s      {\displaystyle 30\;apples-10\;apples=20\;apples}      
数学可以丢弃所讨论的物理对象,并有幸关注抽象概念    1  +  1  =  2      {\displaystyle 1+1=2}         (  1  +  1  )  ×  a  =  2  ×  a      {\displaystyle (1+1)\times a=2\times a}         1  ×  a  +  1  ×  a  =  2  ×  a      {\displaystyle 1\times a+1\times a=2\times a}      
而在数学中,常数     a      {\displaystyle a}     物理 常数,从而允许物理对象在数学方程式中表现为数学实体    1  ×  a  p  p  l  e  +  1  ×  a  p  p  l  e  =  2  ×  a  p  p  l  e      {\displaystyle 1\times apple+1\times apple=2\times apple}      
度量单位在数学方程式中很重要 ,因为它们代表着关键信息,如果忽略这些物理常数,计算中就会出现错误    1  +  1  =  2      {\displaystyle 1+1=2}         1  ×  a  p  p  l  e  +  1  ×  o  r  a  n  g  e  =  1  ×  a  p  p  l  e  +  1  ×  o  r  a  n  g  e      {\displaystyle 1\times apple+1\times orange=1\times apple+1\times orange}      
此外,在进行数学运算时必须小心    (  3  ×  a  p  p  l  e  s  )  ×  (  3  ×  a  p  p  l  e  s  )  =  9  ×  a  p  p  l  e   s   2          {\displaystyle (3\times apples)\times (3\times apples)=9\times apples^{2}}         (  3  ×  a  p  p  l  e  s  )  ×  (  3  ×  o  r  a  n  g  e  s  )  =  9  ×  a  p  p  l  e  s  ×  o  r  a  n  g  e  s      {\displaystyle (3\times apples)\times (3\times oranges)=9\times apples\times oranges}      时间通常以秒为单位测量 
唯一一个没有被十进制化的度量单位(尽管这样的系统确实存在)  
距离 
质量 面积通常以平方米为单位测量    10  m  e  t  e  r  s  ×  m  e  t  e  r  s      {\displaystyle 10\;meters\times meters}         10  s  q  u  a  r  e     m  e  t  e  r  s      {\displaystyle 10\;square\ meters}         10     m       2          {\displaystyle 10\;{\mbox{m}}^{2}}       
体积通常以立方米测量    10  m  e  t  e  r  s  ×  m  e  t  e  r  s  ×  m  e  t  e  r  s      {\displaystyle 10\;meters\times meters\times meters}         10  c  u  b  i  c     m  e  t  e  r  s      {\displaystyle 10\;cubic\ meters}         10     m       3          {\displaystyle 10\;{\mbox{m}}^{3}}       
密度线性密度通常以千克每米测量    10  k  i  l  o  g  r  a  m  s     p  e  r     m  e  t  e  r      {\displaystyle 10\;kilograms\ per\ meter}         10    kg       /      m          {\displaystyle 10\;{\mbox{kg}}/{\mbox{m}}}       
面积密度通常以千克每平方米测量    10  k  i  l  o  g  r  a  m  s     p  e  r     s  q  u  a  r  e     m  e  t  e  r      {\displaystyle 10\;kilograms\ per\ square\ meter}         10    kg       /       m       2          {\displaystyle 10\;{\mbox{kg}}/{\mbox{m}}^{2}}       
体积密度通常以千克每立方米测量    10  k  i  l  o  g  r  a  m  s     p  e  r     c  u  b  i  c     m  e  t  e  r      {\displaystyle 10\;kilograms\ per\ cubic\ meter}         10    kg       /       m       3          {\displaystyle 10\;{\mbox{kg}}/{\mbox{m}}^{3}}        大数    1  ,  000  ,  000  =   10   6      =  1  ×   10   6          {\displaystyle 1,000,000=10^{6}=1\times 10^{6}}         2  ,  500  ,  000  =  2.5  ×   10   6          {\displaystyle 2,500,000=2.5\times 10^{6}}      
小数    0.001  =   10   −  3      =  1  ×   10   −  3          {\displaystyle 0.001=10^{-3}=1\times 10^{-3}}         0.000234  =  2.34  ×   10   −  4          {\displaystyle 0.000234=2.34\times 10^{-4}}      [ 编辑  |  编辑源代码 ] 进一步简化书面数字    4  ,  430     meters      =  4.43  ×   10   3         meters      =  4.43     kilometers          {\displaystyle 4,430{\mbox{ meters}}=4.43\times 10^{3}{\mbox{ meters}}=4.43{\mbox{ kilometers}}}         4  ,  430     m      =  4.43  ×   10   3         m      =  4.43     km          {\displaystyle 4,430{\mbox{ m}}=4.43\times 10^{3}{\mbox{ m}}=4.43{\mbox{ km}}}      
     10   −  24          {\displaystyle 10^{-24}}         =      {\displaystyle =}         y  o  c  t  o      {\displaystyle yocto}         =      {\displaystyle =}     y  
     10   −  21          {\displaystyle 10^{-21}}         =      {\displaystyle =}         z  e  p  t  o      {\displaystyle zepto}         =      {\displaystyle =}     z  
     10   −  18          {\displaystyle 10^{-18}}         =      {\displaystyle =}         a  t  t  o      {\displaystyle atto}         =      {\displaystyle =}     a  
     10   −  15          {\displaystyle 10^{-15}}         =      {\displaystyle =}         f  e  m  t  o      {\displaystyle femto}         =      {\displaystyle =}     f  
     10   −  12          {\displaystyle 10^{-12}}         =      {\displaystyle =}         p  i  c  o      {\displaystyle pico}         =      {\displaystyle =}     p  
     10   −  9          {\displaystyle 10^{-9}}         =      {\displaystyle =}         n  a  n  o      {\displaystyle nano}         =      {\displaystyle =}     n  
     10   −  6          {\displaystyle 10^{-6}}         =      {\displaystyle =}         m  i  c  r  o      {\displaystyle micro}         =      {\displaystyle =}     µ  
     10   −  3          {\displaystyle 10^{-3}}         =      {\displaystyle =}         m  i  l  l  i      {\displaystyle milli}         =      {\displaystyle =}     m  
     10   −  2          {\displaystyle 10^{-2}}         =      {\displaystyle =}         c  e  n  t  i      {\displaystyle centi}         =      {\displaystyle =}     c  
     10   −  1          {\displaystyle 10^{-1}}         =      {\displaystyle =}         d  e  c  i      {\displaystyle deci}         =      {\displaystyle =}     d  
 
     10   1          {\displaystyle 10^{1}}         =      {\displaystyle =}         d  e  k  a      {\displaystyle deka}         =      {\displaystyle =}     da  
     10   2          {\displaystyle 10^{2}}         =      {\displaystyle =}         h  e  c  t  o      {\displaystyle hecto}         =      {\displaystyle =}     h  
     10   3          {\displaystyle 10^{3}}         =      {\displaystyle =}         k  i  l  o      {\displaystyle kilo}         =      {\displaystyle =}     k  
     10   6          {\displaystyle 10^{6}}         =      {\displaystyle =}         m  e  g  a      {\displaystyle mega}         =      {\displaystyle =}     M  
     10   9          {\displaystyle 10^{9}}         =      {\displaystyle =}         g  i  g  a      {\displaystyle giga}         =      {\displaystyle =}     G  
     10   12          {\displaystyle 10^{12}}         =      {\displaystyle =}         t  e  r  a      {\displaystyle tera}         =      {\displaystyle =}     T  
     10   15          {\displaystyle 10^{15}}         =      {\displaystyle =}         p  e  t  a      {\displaystyle peta}         =      {\displaystyle =}     P  
     10   18          {\displaystyle 10^{18}}         =      {\displaystyle =}         e  x  a      {\displaystyle exa}         =      {\displaystyle =}     E  
     10   21          {\displaystyle 10^{21}}         =      {\displaystyle =}         z  e  t  t  a      {\displaystyle zetta}         =      {\displaystyle =}     Z  
     10   24          {\displaystyle 10^{24}}         =      {\displaystyle =}         y  o  t  t  a      {\displaystyle yotta}         =      {\displaystyle =}     Y  
  
在数学方程中,测量单位的行为类似于常数    (  1     m      +  2     m      )  ×  4     m      =  12      m       2          {\displaystyle (1{\mbox{ m}}+2{\mbox{ m}})\times 4{\mbox{ m}}=12{\mbox{ m}}^{2}}      
为了将一个单位转换为另一个单位,我们利用一个将两个测量值联系起来的方程式。    1     km      =  1000     m          {\displaystyle 1{\mbox{ km}}=1000{\mbox{ m}}\,}      
我们可以求解并用常数     m      {\displaystyle m}           1  1000         km      =     m          {\displaystyle {\frac {1}{1000}}{\mbox{ km}}={\mbox{ m}}}          [   1   (     1  1000         km        )    +  2   (     1  1000         km        )      ]    ×  4   (     1  1000         km        )    =  12    (     1  1000         km        )     2          {\displaystyle \left[1\left({\frac {1}{1000}}{\mbox{ km}}\right)+2\left({\frac {1}{1000}}{\mbox{ km}}\right)\right]\times 4\left({\frac {1}{1000}}{\mbox{ km}}\right)=12\left({\frac {1}{1000}}{\mbox{ km}}\right)^{2}}          (   1  ×   10   −  3         km      +  2  ×   10   −  3         km        )    ×  4  ×   10   −  3         km      =  12  ×   10   −  6          km       2          {\displaystyle \left(1\times 10^{-3}{\mbox{ km}}+2\times 10^{-3}{\mbox{ km}}\right)\times 4\times 10^{-3}{\mbox{ km}}=12\times 10^{-6}{\mbox{ km}}^{2}}      单位转换的数学原理
  1. In mathematical equations, units of measurement behave as constants
         * (1\mbox{ m} + 2\mbox{ m})\times 4\mbox{ m} = 12\mbox{ m}^2
  2. To convert from one unit of to another, we utilize an equation relating the two measurements
         * 1\mbox{ km} = 1000\mbox{ m} \,
  3. We can solve and substitute for the constant m
         * \frac{1}{1000}\mbox{ km} = \mbox{ m}
         * \left[1\left(\frac{1}{1000}\mbox{ km}\right) + 2\left(\frac{1}{1000}\mbox{ km}\right)\right]\times 4\left(\frac{1}{1000}\mbox{ km}\right) = 12 \left(\frac{1}{1000}\mbox{ km}\right)^2
         * \left(1\times 10^{-3}\mbox{ km} + 2\times 10^{-3}\mbox{ km}\right)\times 4\times 10^{-3}\mbox{ km} = 12\times 10^{-6}\mbox{ km}^2
 
导数和小量 
积分和无限量的求和