考虑矩阵集 A = { A d ( α ) ∈ R n × n | A d ( α ) = Σ i = 1 n α A d , i , A d , i ∈ R n × n , α i ∈ R ≥ 0 } , Σ i = 1 n α i = 1 } {\displaystyle {\mathbf {A}}=\{{\mathbf {A}}_{d}(\alpha )\in \mathbb {R} ^{n\times n}|{\mathbf {A}}_{d}(\alpha )=\Sigma _{i=1}^{n}\alpha {\mathbf {A}}_{d,i},{\mathbf {A}}_{d,i}\in \mathbb {R} ^{n\times n},\alpha _{i}\in \mathbb {R} _{\geq 0}\},\Sigma _{i=1}^{n}\alpha _{i}=1\}} ,
离散时间 LTI 系统 x k + 1 = A d ( α ) x k + 1 {\displaystyle {\mathbf {x}}_{k+1}={\mathbf {A}}_{d}(\alpha ){\mathbf {x}}_{k+1}} 对所有 A d ( α ) ∈ A {\displaystyle {\mathbf {A}}_{d}(\alpha )\in \mathbb {\mathbf {A}} } 渐近稳定,如果存在 P ∈ S n {\displaystyle {\mathbf {P}}\in \mathbb {S} ^{n}} , i = 1 , . . . , n {\displaystyle i=1,...,n} ,和 G ∈ R n × n {\displaystyle {\mathbf {G}}\in \mathbb {R} ^{n\times n}} ,其中 P i > 0 , i = 1 , . . . , n {\displaystyle {\mathbf {P}}_{i}>0,i=1,...,n} ,使得
[ P i P A d , i T G T ∗ G + G T − P i ] < 0. {\displaystyle {\begin{bmatrix}{\mathbf {P}}_{i}&{\mathbf {P}}A_{d,i}^{T}{\mathbf {G}}^{T}\\*&{\mathbf {G}}+{\mathbf {G}}^{T}-{\mathbf {P}}_{i}\end{bmatrix}}<0.} , i = 1 , . . . , n {\displaystyle i=1,...,n}
这用于获取开环稳定性。
Caverly,Ryan;Forbes,James(2021)。LMI 属性及其在系统、稳定性和控制理论中的应用。