跳转到内容

MINC/教程/编程06

来自维基教科书,自由的教科书

超立方体部分 2

[编辑 | 编辑源代码]

继续学习超立方体:我们将再次使用相同的技巧,为每个体素加一。我们将以略微不同的方式进行:这次我们将获取并设置每个切片的超立方体,使用更少的内存。而且,为了获得更多 mincy 的好处,我们将使用切片缩放进行输出。

#include <minc2.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

int main(int argc, char **argv) {
  mihandle_t    minc_volume, new_volume;
  midimhandle_t dimensions[3], *dimensions_new;
  double        min, max;
  int           result, i, slice;
  unsigned long start[3], count[3];
  unsigned int  sizes[3];
  double        *slab;

  if (argc != 3) {
    fprintf(stderr, "Usage: input.mnc output.mnc\n");
  }

  /* open the volume - first command line argument */
  result = miopen_volume(argv[1], MI2_OPEN_READ, &minc_volume);
  /* check for error on opening */
  if (result != MI_NOERROR) {
    fprintf(stderr, "Error opening input file: %d.\n", result);
    return(1);
  }

  /* get the dimension sizes */
  miget_volume_dimensions(minc_volume, MI_DIMCLASS_SPATIAL,
			  MI_DIMATTR_ALL, MI_DIMORDER_FILE,
			  3, dimensions);
  miget_dimension_sizes(dimensions, 3, sizes);
  printf("Volume sizes: %u %u %u\n", sizes[0], sizes[1], sizes[2]);

  /* allocate new dimensions */
  dimensions_new = malloc(sizeof(midimhandle_t) * 3);

  /* copy the dimensions */
  for(i=0; i < 3; i++) {
    micopy_dimension(dimensions[i], &dimensions_new[i]);
  }

此代码与上次教程中的代码相同。

 /* create the new volume */
  if (micreate_volume(argv[2], 3, dimensions_new, MI_TYPE_UBYTE,
		      MI_CLASS_REAL, NULL, &new_volume) != MI_NOERROR) {
    fprintf(stderr, "Error creating new volume\n");
    return(1);
  }
  /* indicate that we will be using slice scaling */
  miset_slice_scaling_flag(new_volume, TRUE);

  /* set valid range */
  miset_volume_valid_range(new_volume, 255, 0);
  
  /* create the data for the new volume */
  if (micreate_volume_image(new_volume) != MI_NOERROR) {
    fprintf(stderr, "Error creating volume data\n");
    return(1);
  }

这次我们在开始处理实际数据之前创建了体积。我们还使用 miset_slice_scaling_flag 设置切片缩放 - 请注意,这必须在 micreate_volume_image 之前进行。其余部分与之前相同。

  /* now go into a slice loop - get each slice as a hyperslab. *
   * First allocate enough memory to hold one slice of data */
  slab = malloc(sizeof(double) * sizes[1] * sizes[2]);

  /* the start and counts */
  start[0] = start[1] = start[2] = 0;

  /* always one slice */
  count[0] = 1;
  count[1] = (unsigned long) sizes[1];
  count[2] = (unsigned long) sizes[2];

  /* start the loop itself */
  for (slice=0; slice < sizes[0]; slice++) {
    /* set the slice start */
    start[0] = (unsigned long) slice;
    if (miget_real_value_hyperslab(minc_volume, MI_TYPE_DOUBLE,
				   start, count, slab) != MI_NOERROR) {
      fprintf(stderr, "Error getting hyperslab for slice %d\n", slice);
      return(1);
    }
    
    /* set min and max to the first voxel of the slice plus 1 
     *  (since we add one to everything anyway) */
    min = slab[0]+1;
    max = slab[0]+1;
    
    /* loop over all voxels in slice */
    for (i=0; i < sizes[1] * sizes[2]; i++) {
      /* increment voxel by 1 */
      slab[i] += 1;
    
      /* check if min or max should be changed */
      if (slab[i]+1 < min) {
	min = slab[i]+1;
      }
      else if (slab[i]+1 > max) {
	max = slab[i]+1;
      }
    }
    /* set the slice scaling */
    miset_slice_range(new_volume, start, 3, max, min);

    /* put the hyperslab into the new volume */
    if (miset_real_value_hyperslab(new_volume, MI_TYPE_DOUBLE,
				   start, count, slab) != MI_NOERROR) {
      fprintf(stderr, "Error setting hyperslab\n");
      return(1);
    }
  }

对数据的循环变得更加复杂。我们现在为一个足以容纳一个切片的超立方体分配了数据,并且我们对每个切片重用了同一个数组。然后我们获取每个切片的超立方体,在跟踪切片特定的最小值和最大值的同时对体素进行相同的操作,并设置切片范围。然后我们将修改后的超立方体放入新体积中,并继续下一个切片。

  /* closes the volume and makes sure all data is written to file */
  miclose_volume(minc_volume);
  miclose_volume(new_volume);

  /* free memory */
  free(dimensions_new);
  free(slab);

  return(0);
}

我们以与之前相同的方式结束。

#include <minc2.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>

int main(int argc, char **argv) {
  mihandle_t    minc_volume, new_volume;
  midimhandle_t dimensions[3], *dimensions_new;
  double        min, max;
  int           result, i, slice;
  unsigned long start[3], count[3];
  unsigned int  sizes[3];
  double        *slab;

  if (argc != 3) {
    fprintf(stderr, "Usage: input.mnc output.mnc\n");
  }

  /* open the volume - first command line argument */
  result = miopen_volume(argv[1], MI2_OPEN_READ, &minc_volume);
  /* check for error on opening */
  if (result != MI_NOERROR) {
    fprintf(stderr, "Error opening input file: %d.\n", result);
    return(1);
  }

  /* get the dimension sizes */
  miget_volume_dimensions(minc_volume, MI_DIMCLASS_SPATIAL,
			  MI_DIMATTR_ALL, MI_DIMORDER_FILE,
			  3, dimensions);
  miget_dimension_sizes(dimensions, 3, sizes);
  printf("Volume sizes: %u %u %u\n", sizes[0], sizes[1], sizes[2]);

  /* allocate new dimensions */
  dimensions_new = malloc(sizeof(midimhandle_t) * 3);

  /* copy the dimensions */
  for(i=0; i < 3; i++) {
    micopy_dimension(dimensions[i], &dimensions_new[i]);
  }


  /* create the new volume */
  if (micreate_volume(argv[2], 3, dimensions_new, MI_TYPE_UBYTE,
		      MI_CLASS_REAL, NULL, &new_volume) != MI_NOERROR) {
    fprintf(stderr, "Error creating new volume\n");
    return(1);
  }
  /* indicate that we will be using slice scaling */
  miset_slice_scaling_flag(new_volume, TRUE);

  /* set valid range */
  miset_volume_valid_range(new_volume, 255, 0);
  
  /* create the data for the new volume */
  if (micreate_volume_image(new_volume) != MI_NOERROR) {
    fprintf(stderr, "Error creating volume data\n");
    return(1);
  }



  /* now go into a slice loop - get each slice as a hyperslab. *
   * First allocate enough memory to hold one slice of data */
  slab = malloc(sizeof(double) * sizes[1] * sizes[2]);

  /* the start and counts */
  start[0] = start[1] = start[2] = 0;

  /* always one slice */
  count[0] = 1;
  count[1] = (unsigned long) sizes[1];
  count[2] = (unsigned long) sizes[2];

  /* start the loop itself */
  for (slice=0; slice < sizes[0]; slice++) {
    /* set the slice start */
    start[0] = (unsigned long) slice;
    if (miget_real_value_hyperslab(minc_volume, MI_TYPE_DOUBLE,
				   start, count, slab) != MI_NOERROR) {
      fprintf(stderr, "Error getting hyperslab for slice %d\n", slice);
      return(1);
    }
    
    /* set min and max to the first voxel of the slice plus 1 
     *  (since we add one to everything anyway) */
    min = slab[0]+1;
    max = slab[0]+1;
    
    /* loop over all voxels in slice */
    for (i=0; i < sizes[1] * sizes[2]; i++) {
      /* increment voxel by 1 */
      slab[i] += 1;
    
      /* check if min or max should be changed */
      if (slab[i]+1 < min) {
	min = slab[i]+1;
      }
      else if (slab[i]+1 > max) {
	max = slab[i]+1;
      }
    }
    /* set the slice scaling */
    miset_slice_range(new_volume, start, 3, max, min);

    /* put the hyperslab into the new volume */
    if (miset_real_value_hyperslab(new_volume, MI_TYPE_DOUBLE,
				   start, count, slab) != MI_NOERROR) {
      fprintf(stderr, "Error setting hyperslab\n");
      return(1);
    }
  }
  
  /* closes the volume and makes sure all data is written to file */
  miclose_volume(minc_volume);
  miclose_volume(new_volume);

  /* free memory */
  free(dimensions_new);
  free(slab);

  return(0);
}
华夏公益教科书