跳转到内容

二维逆问题/斯蒂尔杰斯连分数

来自Wikibooks,开放世界中的开放书籍
Let  be a sequence of n positive numbers. The Stieltjes continued fraction is an expression of the form, see [KK] & also [JT],
or its reciprocal 

该函数定义了复平面右半部分到其自身的n1的有理映射,

因为

练习(***)。利用斯蒂尔杰斯连分数的映射性质证明其交错、简单且对称的零点和极点位于原点和虚轴上,并且这些性质和有理性表征了连分数。
练习(**)。证明连分数具有表示形式,是非负实数,并且连分数由此表征。
The function  is determined by the pre-image of unity (i.e. n points, counting multiplicities), since
and a complex polynomial is determined by its roots up to a multiplicative constant by the fundamental theorem of algebra.
Let  be the elementary symmetric functions of the set . That is,

Then, the coefficients  of the continued fraction are the pivots in the Gauss-Jordan elimination algorithm of the following  square Hurwitz matrix:

因此,可以表示为块的行列式的单项式比率。

练习 (**)。证明

</math>

练习 (*)。利用前面的练习证明
华夏公益教科书