Let
be a sequence of n positive numbers. The Stieltjes continued fraction is an expression of the form, see [KK] & also [JT],

or its reciprocal
该函数定义了复平面右半部分到其自身的n对1的有理映射,
![{\displaystyle \beta _{a},1/\beta _{a}:\mathbb {C^{+}} {\xrightarrow[{}]{n\leftrightarrow 1}}\mathbb {C^{+}} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1458c2d45bfeeac4a2bc83393ff6c2b4b3aa3)
因为

- 练习(***)。利用斯蒂尔杰斯连分数的映射性质证明其交错、简单且对称的零点和极点位于原点和虚轴上,并且这些性质和有理性表征了连分数。
- 练习(**)。证明连分数具有表示形式
,是非负实数,并且连分数由此表征。
The function
is determined by the pre-image of unity (i.e. n points, counting multiplicities), since

and a complex polynomial is determined by its roots up to a multiplicative constant by the fundamental theorem of algebra.
Let
be the elementary symmetric functions of the set
. That is,
Then, the coefficients
of the continued fraction are the pivots in the Gauss-Jordan elimination algorithm of the following
square Hurwitz matrix:

因此,可以表示为
块的行列式的单项式比率。
- 练习 (**)。证明
</math>

- 练习 (*)。利用前面的练习证明
