Let be a sequence of n positive numbers. The Stieltjes continued fraction is an expression of the form, see [KK] & also [JT],
or its reciprocal
该函数定义了复平面右半部分到其自身的n对1的有理映射,
因为
- 练习(***)。利用斯蒂尔杰斯连分数的映射性质证明其交错、简单且对称的零点和极点位于原点和虚轴上,并且这些性质和有理性表征了连分数。
- 练习(**)。证明连分数具有表示形式,是非负实数,并且连分数由此表征。
The function is determined by the pre-image of unity (i.e. n points, counting multiplicities), since
and a complex polynomial is determined by its roots up to a multiplicative constant by the fundamental theorem of algebra.
Let be the elementary symmetric functions of the set . That is,
-
Then, the coefficients of the continued fraction are the pivots in the Gauss-Jordan elimination algorithm of the following square Hurwitz matrix:
因此,可以表示为块的行列式的单项式比率。
- 练习 (**)。证明
</math>
- 练习 (*)。利用前面的练习证明