以下演示了什么是状态函数,什么不是状态函数。
q r e v {\displaystyle q_{rev}\;} 对于服从范德华方程的气体来说,不是精确微分,但 q r e v T {\displaystyle {\frac {q_{rev}}{T}}} 是,如下所示
d q r e v = ( ∂ U ∂ T ) v d T + [ P e x t + ( ∂ U ∂ V ) T ] d V {\displaystyle dq_{rev}\;=\left({\frac {\partial U}{\partial T}}\right)_{v}dT+\left[P_{ext}+\left({\frac {\partial U}{\partial V}}\right)_{T}\right]dV}
我们假设准静态情况,因此 P e x t = P {\displaystyle P_{ext}=P\;} .
d q r e v = ( ∂ U ∂ T ) v d T + [ P + ( ∂ U ∂ V ) T ] d V {\displaystyle dq_{rev}\;=\left({\frac {\partial U}{\partial T}}\right)_{v}dT+\left[P+\left({\frac {\partial U}{\partial V}}\right)_{T}\right]dV}
= C v d T + [ P + ( ∂ U ∂ V ) T ] d V {\displaystyle =C_{v}dT+\left[P+\left({\frac {\partial U}{\partial V}}\right)_{T}\right]dV}
= C v d T + [ P + ( a V ¯ 2 ) ] d V {\displaystyle =C_{v}dT+\left[P+\left({\frac {a}{{\overline {V}}^{2}}}\right)\right]dV}
= C v d T + ( R T V ¯ − b ) d V {\displaystyle =C_{v}dT+\left({\frac {RT}{{\overline {V}}-b}}\right)dV}
现在,您需要进行交叉偏导数。
( ∂ C v ∂ V ) T = 0 {\displaystyle \left({\frac {\partial C_{v}}{\partial V}}\right)_{T}=0}
( ∂ ( R T V ¯ − b ) ∂ T ) V = R V ¯ − b {\displaystyle \left({\frac {\partial \left({\frac {RT}{{\overline {V}}-b}}\right)}{\partial T}}\right)_{V}={\frac {R}{{\overline {V}}-b}}}
它们并不相等;因此, q r e v {\displaystyle q_{rev}\;} 不是精确微分(不是状态函数)。
但是,如果我们取 q r e v T {\displaystyle {\frac {q_{rev}}{T}}} 它将是精确微分(状态函数)。
d q r e v T = C v T d T + ( R V ¯ − b ) d V {\displaystyle {\frac {dq_{rev}}{T}}={\frac {C_{v}}{T}}dT+\left({\frac {R}{{\overline {V}}-b}}\right)dV}
求交叉偏导数。
( ∂ ( C v T ) ∂ V ) T = 0 {\displaystyle \left({\frac {\partial \left({\frac {C_{v}}{T}}\right)}{\partial V}}\right)_{T}=0}
( ∂ ( R V ¯ − b ) ∂ T ) V = 0 {\displaystyle \left({\frac {\partial \left({\frac {R}{{\overline {V}}-b}}\right)}{\partial T}}\right)_{V}=0}
两者相等,使 q r e v T {\displaystyle {\frac {q_{rev}}{T}}} 成为精确微分(状态函数)。