跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
电路响应
切换电路响应小节
1.1
平衡响应
1.2
共振响应
切换目录
实用电子学/串联RLC电路
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Page information
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移动到侧边栏
隐藏
来自维基教科书,开放世界中的开放书籍
<
实用电子学
此页面可能需要
审查
质量。
由3个组件串联连接的电路
电路响应
[
编辑
|
编辑源代码
]
平衡响应
[
编辑
|
编辑源代码
]
在平衡状态下,所有电压之和等于零
v
L
+
v
C
+
v
R
=
0
{\displaystyle v_{L}+v_{C}+v_{R}=0}
L
d
i
d
t
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {di}{dt}}+{\frac {1}{C}}\int idt+iR=0}
d
2
i
d
t
2
+
R
L
d
i
d
t
+
1
L
C
i
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}+{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}i=0}
以上方程式可以写成如下形式
d
2
i
d
t
2
=
−
2
α
d
i
d
t
−
β
i
{\displaystyle {\frac {d^{2}i}{dt^{2}}}=-2\alpha {\frac {di}{dt}}-\beta i}
其中
α
=
R
2
L
=
β
γ
{\displaystyle \alpha ={\frac {R}{2L}}=\beta \gamma }
β
=
1
L
C
=
1
T
{\displaystyle \beta ={\frac {1}{LC}}={\frac {1}{T}}}
T
=
L
C
{\displaystyle T=LC}
γ
=
R
C
{\displaystyle \gamma =RC}
以上二阶微分方程的根
α
=
β
{\displaystyle \alpha =\beta }
i
(
t
)
=
A
e
−
α
t
{\displaystyle i(t)=Ae^{-\alpha t}}
α
>
β
{\displaystyle \alpha >\beta }
i
(
t
)
=
A
e
(
−
α
±
λ
)
t
{\displaystyle i(t)=Ae^{(-\alpha \pm \lambda )t}}
α
<
β
{\displaystyle \alpha <\beta }
i
(
t
)
=
A
e
(
−
α
±
j
ω
)
t
=
A
(
α
)
sin
ω
t
{\displaystyle i(t)=Ae^{(-\alpha \pm j\omega )t}=A(\alpha )\sin \omega t}
共振响应
[
编辑
|
编辑源代码
]
电路的总阻抗
Z
=
Z
R
+
Z
L
+
Z
C
=
R
+
0
=
R
{\displaystyle Z=Z_{R}+Z_{L}+Z_{C}=R+0=R}
i
=
V
R
{\displaystyle i={\frac {V}{R}}}
Z
L
=
Z
C
{\displaystyle Z_{L}=Z_{C}}
j
ω
L
=
1
j
ω
C
{\displaystyle j\omega L={\frac {1}{j\omega C}}}
ω
o
=
±
j
1
T
{\displaystyle \omega _{o}=\pm j{\sqrt {\frac {1}{T}}}}
T
=
L
C
{\displaystyle T=LC}
当
ω
o
=
±
j
1
T
{\displaystyle \omega _{o}=\pm j{\sqrt {\frac {1}{T}}}}
时,电路的总阻抗为 Z = R。因此,电流等于
i
=
V
R
{\displaystyle i={\frac {V}{R}}}
当
ω
=
0.
Z
C
=
o
o
{\displaystyle \omega =0.Z_{C}=oo}
时,电容使电路断开。因此,电流等于零。
当
ω
=
o
o
.
Z
L
=
o
o
{\displaystyle \omega =oo.Z_{L}=oo}
时,电感使电路断开。因此,电流等于零。
类别
:
图书:实用电子学
华夏公益教科书