f ( x ) = 1 x {\displaystyle f(x)={\frac {1}{x}}\,}
f ( 3 4 ) = {\displaystyle f\left({\frac {3}{4}}\right)=\,} 1 3 4 = {\displaystyle {\frac {1}{\frac {3}{4}}}=\,} 1 ∗ ( 3 4 ) − 1 = 4 3 {\displaystyle 1*\left({\frac {3}{4}}\right)^{-1}={\frac {4}{3}}\,}
f ( − 2 3 ) = {\displaystyle f\left(-{\frac {2}{3}}\right)=\,} 1 − 2 3 = {\displaystyle {\frac {1}{-{\frac {2}{3}}}}=\,} 1 ∗ ( − 2 3 ) − 1 = {\displaystyle 1*\left({\frac {-2}{3}}\right)^{-1}=\,} 3 − 2 {\displaystyle {\frac {3}{-2}}\,}
f ( x ) = 1 x 2 − 2 {\displaystyle f(x)={\frac {1}{x^{2}-2}}\,} ( x ≠ ± 2 ) {\displaystyle (x\neq \pm {\sqrt {2}})\,}
f ( 5 ) = 1 5 2 − 2 = 1 25 − 2 = 1 23 {\displaystyle f(5)={\frac {1}{5^{2}-2}}={\frac {1}{25-2}}={\frac {1}{23}}\,}
f ( x ) = x 3 {\displaystyle f(x)={\sqrt[{3}]{x}}\,} 对所有实数都有定义。
f ( 27 ) = 27 3 = 3 {\displaystyle f(27)={\sqrt[{3}]{27}}=3\,} 因为 3 3 = 27. {\displaystyle 3^{3}=27.\,}
a ) f ( 1 ) = 1 {\displaystyle a)f(1)=1\,}
b ) f ( − 3 ) = 3 {\displaystyle b)f(-3)=3\,}
c ) f ( − 4 3 ) = 4 3 {\displaystyle c)f\left(-{\frac {4}{3}}\right)={\frac {4}{3}}\,}
a ) f ( 1 2 ) = 1 / 2 + | 1 / 2 | = 1 {\displaystyle a)f\left({\frac {1}{2}}\right)=1/2+|1/2|=1\,}
b ) f ( 2 ) = 2 + | 2 | = 4 {\displaystyle b)f(2)=2+|2|=4\,}
c ) f ( − 4 ) = − 4 + | − 4 | = − 4 + 4 = 0 {\displaystyle c)f(-4)=-4+|-4|=-4+4=0\,}
d ) f ( − 5 ) = − 5 + | − 5 | = − 5 + 5 = 0 {\displaystyle d)f(-5)=-5+|-5|=-5+5=0\,}
f ( x ) = 2 x + x 2 − 5 {\displaystyle f(x)=2x+x^{2}-5\,}
a ) f ( 1 ) = 2 ( 1 ) + ( 1 ) 2 − 5 = − 2 {\displaystyle a)f(1)=2(1)+(1)^{2}-5=-2\,}
b ) f ( − 1 ) = 2 ( − 1 ) + ( − 1 ) 2 − 5 = − 6 {\displaystyle b)f(-1)=2(-1)+(-1)^{2}-5=-6\,}
f ( x ) = x 4 {\displaystyle f(x)={\sqrt[{4}]{x}}\,}
x ≥ 0 {\displaystyle x\geq 0\,}
f ( 16 ) = 2 , {\displaystyle f(16)=2,\,} 因为 2 4 = 16 {\displaystyle 2^{4}=16\,}
f ( x ) = − f ( x ) {\displaystyle f(x)=-f(x)\,} 被称为对于所有数字 x 的偶函数。
f ( x ) = − f ( − x ) {\displaystyle f(x)=-f(-x)\,} 被称为对于所有 x 的奇函数。
a ) f ( x ) = x {\displaystyle a)f(x)=x\,} 是奇函数。
b ) f ( x ) = x 2 {\displaystyle b)f(x)=x^{2}\,} 是偶函数。
c ) f ( x ) = x 3 {\displaystyle c)f(x)=x^{3}\,} 是奇函数。
d ) f ( x ) = 1 x {\displaystyle d)f(x)={\frac {1}{x}}\,} 如果 x ≠ 0 {\displaystyle x\neq 0\,} 并且 f ( 0 ) = 0 {\displaystyle f(0)=0\,} 是奇函数。
令 f e ( x ) = f ( x ) + f ( − x ) 2 {\displaystyle f_{e}(x)={\frac {f(x)+f(-x)}{2}}\,} 和 f o ( x ) = f ( x ) − f ( − x ) 2 {\displaystyle f_{o}(x)={\frac {f(x)-f(-x)}{2}}\,} 分别是偶函数和奇函数。
然后 f e ( x ) + f o ( x ) = f ( x ) + f ( − x ) + f ( x ) − f ( − x ) 2 = f e ( x ) {\displaystyle f_{e}(x)+f_{o}(x)={\frac {f(x)+f(-x)+f(x)-f(-x)}{2}}=f_{e}(x)\,}
a) 奇函数
b) 偶函数
c) 奇函数
d) 奇函数
e) 偶函数
f) 偶函数
g) 偶函数
a ) {\displaystyle a)\,} f a ( x ) = f ( x ) − f ( − x ) 2 {\displaystyle f_{a}(x)={\frac {f(x)-f(-x)}{2}}\,} f b ( x ) = f ( x ) − f ( − x ) 2 {\displaystyle f_{b}(x)={\frac {f(x)-f(-x)}{2}}\,}
f a ( x ) + f b ( x ) = f ( x ) − f ( − x ) + f ( x ) − f ( − x ) 2 {\displaystyle f_{a}(x)+f_{b}(x)={\frac {f(x)-f(-x)+f(x)-f(-x)}{2}}\,}
因此, f a ( x ) + f b ( x ) = f ( x ) − f ( − x ) {\displaystyle f_{a}(x)+f_{b}(x)=f(x)-f(-x)\,} (奇函数)
b ) {\displaystyle b)\,} f a ( x ) = f ( x ) + f ( − x ) 2 {\displaystyle f_{a}(x)={\frac {f(x)+f(-x)}{2}}\,} f b ( x ) = f ( x ) + f ( − x ) 2 {\displaystyle f_{b}(x)={\frac {f(x)+f(-x)}{2}}\,}
f a ( x ) + f b ( x ) = f ( x ) + f ( − x ) + f ( x ) + f ( − x ) 2 {\displaystyle f_{a}(x)+f_{b}(x)={\frac {f(x)+f(-x)+f(x)+f(-x)}{2}}\,}
因此, f a ( x ) + f b ( x ) = f ( x ) + f ( − x ) {\displaystyle f_{a}(x)+f_{b}(x)=f(x)+f(-x)\,} (偶函数)