考虑两个观察者 和 ,相对于彼此以速度 运动,他们同步他们的时钟,使得 当他们彼此经过时。他们都观察到同一个事件,即光闪烁。产生光的事件由观察者记录的坐标将如何相互关联?
坐标之间的关系可以通过基于相对论原理和额外的均匀性和各向同性假设的线性代数推导出来。
均匀性和各向同性假设:空间在所有方向上都是均匀和同质的。如果不是这样,那么当比较坐标系之间的长度时,长度将取决于测量的 位置。例如,如果 则两点之间的距离将取决于位置。
联系带撇号和不带撇号坐标系的线性方程为
在 或 方向没有相对运动,因此根据“相对论”原理
因此
- 和
- 以及
因此,以下方程还有待求解。
如果空间是各向同性的(在所有方向上相同),那么时钟的运动应该与 y 和 z 轴无关(否则,对称地放置在 x 轴周围的时钟似乎会不一致)。因此
所以
满足 的事件也必须满足 。因此
和
鉴于方程是线性的,那么 以及
和
因此, 的正确变换方程为
到目前为止的分析给出了以下方程
假设光速是恒定的,那么以球体形式扩展的光闪光的坐标将在每个坐标系中满足以下方程
将坐标变换方程代入第二个方程得到
重新排列
我们要求这与
所以我们得到
解这三个联立方程得到
将这些值代入
得到
逆变换是
如果光速恒定,两个观察者如何利用光线测量事件的位置和时间?现代分析这个问题,揭示了所涉及的假设,如上所述,但爱因斯坦最初的推理(爱因斯坦 1905,1920)如下。
光沿着正 x 轴传播,符合方程 其中 是光速。这可以改写为
另一个相对于第一个观察者运动的观察者可能会发现 x 和 t 的不同值,但相同的方程将适用
这些公式之间的一个简单的关系,适用于同一个事件是
光沿着负 x 轴传播,符合方程 其中 是光速。这可以改写为
并且
将这两个方程相加,并代入 和
- (1)
- (2)
其中一个坐标系的原点可以设定为,因此
如果 是一个观察者相对于另一个观察者的速度,那么,并且
- (3)
在
- (4)
因此,在带撇号的参考系中相隔单位距离的两点,即当时,在不带撇号的参考系中具有以下间隔
- (5)
现在可以从方程 (1) 和 (2) 中消去 ,并与 和 (4) 相结合,得到当 并且 时的结果
- (6)
如果
- (7)
现在,如果这两个运动系统是相同的,并且情况是对称的,那么在未标注系统中对标注系统中显示为一米的刻度的测量,将与在标注系统中对未标注系统中显示为一米的刻度的测量相同。因此 (5) 和 (7) 可以组合起来,使得
所以
将此 的值代入方程式 (1) 和 (2),并解出 ,得到
这些是 x 轴上事件的 **洛伦兹变换方程**。
爱因斯坦,A. (1920)。相对论。狭义和广义相对论。Methuen & Co Ltd 1920。1916 年 12 月写成。罗伯特·W·劳森(授权翻译)。http://www.bartleby.com/173/