A r e a = b ∗ h 2 {\displaystyle Area={\frac {b*h}{2}}}
A r e a = π r 2 4 {\displaystyle Area={\frac {\pi \ r^{2}}{4}}}
A r e a = π r 2 2 {\displaystyle Area={\frac {\pi \ r^{2}}{2}}}
A r e a = 2 a h 3 {\displaystyle Area={\frac {2ah}{3}}}
A r e a = 4 a h 3 {\displaystyle Area={\frac {4ah}{3}}}
A r e a = a h 3 {\displaystyle Area={\frac {ah}{3}}}
A r e a = α r 2 {\displaystyle Area=\alpha \ r^{2}}
A r e a = π 2 {\displaystyle Area={\frac {\pi \ }{2}}}
A r e a = π r {\displaystyle Area=\pi \ r}
A r e a = 2 α r {\displaystyle Area=2\alpha \ r}
I x = 1 3 b h 3 {\displaystyle I_{x}={\frac {1}{3}}bh^{3}}
I y = 1 3 h b 3 {\displaystyle I_{y}={\frac {1}{3}}hb^{3}}
I x ′ = 1 12 b h 3 {\displaystyle I_{x'}={\frac {1}{12}}bh^{3}}
I y ′ = 1 12 h b 3 {\displaystyle I_{y'}={\frac {1}{12}}hb^{3}}
I x = 1 12 b h 3 {\displaystyle I_{x}={\frac {1}{12}}bh^{3}}
I y = 1 4 h b 3 {\displaystyle I_{y}={\frac {1}{4}}hb^{3}}
I x ′ = 1 36 b h 3 {\displaystyle I_{x'}={\frac {1}{36}}bh^{3}}
I y ′ = 1 36 h b 3 {\displaystyle I_{y'}={\frac {1}{36}}hb^{3}}
J C = π r 4 2 {\displaystyle J_{C}={\frac {\pi \ r^{4}}{2}}}
I x ′ = I y ′ = π r 4 4 {\displaystyle I_{x'}=I_{y'}={\frac {\pi \ r^{4}}{4}}}
此公式用于空心圆柱体,其外半径和内半径之间存在固体材料,但内半径和中心之间没有材料,例如管道的横截面。
I = π ( r o 4 − r i 4 ) 4 {\displaystyle I={\frac {\pi \ (r_{o}^{4}-r_{i}^{4})}{4}}}
r o {\displaystyle r_{o}} 是外半径 r i {\displaystyle r_{i}} 是内半径
I x = I y = 1 8 π r 4 {\displaystyle I_{x}=I_{y}={\frac {1}{8}}\pi \ r^{4}}
I x ′ = ( π 8 − 8 9 π ) r 4 {\displaystyle I_{x'}=({\frac {\pi }{8}}-{\frac {8}{9\pi }})r^{4}}
I y ′ = 1 8 π r 4 {\displaystyle I_{y'}={\frac {1}{8}}\pi \ r^{4}}
I x = I y = 1 16 π r 4 {\displaystyle I_{x}=I_{y}={\frac {1}{16}}\pi \ r^{4}}
I x ′ = I y ′ = ( π 16 − 4 9 π ) r 4 {\displaystyle I_{x'}=I_{y'}=({\frac {\pi }{16}}-{\frac {4}{9\pi }})r^{4}}
Statics/Geometric_Properties_of_Solids