统计分析:使用 R 入门/R/随机抽样
外观
< 统计分析:使用 R 入门 | R
从帮助页面中,我们已经看到 sample 函数可以接受许多不同的参数。x 必须是一个包含项目的向量,size 必须是一个数字。由于 1:6 给出从 1 到 6 的数字向量,我们可以设置 x=1:6 和 size=5。这里有 5 个示例(注意,前 4 个是等效的,虽然实际结果会因抽样时的随机效应而有所不同[1])。
###The next 4 lines are equivalent, 5 numbers are selected from a list of 1..6 sample(x=1:6, size=5, replace=FALSE) #when sampling WITHOUT replacement, each number only appears once sample(replace=FALSE, size=5, x=1:6) #you can change the order of the arguments sample(x=1:6, size=5) #the same, because replace=FALSE by default sample(1:6, 5) #we don't need x= and size= if arguments are in the same order as in the help file ### The next line is a different model sample(1:6, 5, TRUE) #sampling WITH replacement (the same number can appear twice) ###The next 4 lines are equivalent, 5 numbers are selected from a list of 1..6 sample(x=1:6, size=5, replace=FALSE) #when sampling WITHOUT replacement, each number only appears once [1] 1 5 4 3 6 sample(replace=FALSE, size=5, x=1:6) #you can change the order of the arguments [1] 5 6 4 2 1 sample(x=1:6, size=5) #the same, because replace=FALSE by default [1] 2 3 4 6 5 sample(1:6, 5) #we don't need x= and size= if arguments are in the same order as in the help file [1] 1 6 3 5 4 ### Now simulate a different model sample(1:6, 5, TRUE) #sampling WITH replacement (the same number can appear twice) [1] 3 6 2 1 3
如上所述,我们的“公平骰子”模型是带有放回的抽样:同一个数字可以出现两次(并且实际上在我们的数据中确实出现了)。因此,我们在 R 中的模拟模型很简单:
sample(1:6, 5, TRUE)
- ↑ 在每章之前调用 set.seed(1) 以获得完全相同的结果