计算在 298 K 时 N2 分子处于基态振动状态的概率。
系统在特定时间和特定温度下占据给定状态的概率由玻尔兹曼分布给出。


其中
- i 是所关注的特定状态 i 的能量
- kB 是玻尔兹曼常数,等于
JK-1
- T 是以开尔文表示的温度
该函数的分母被称为配分函数 Q,它对应于分子可访问状态的总数。
分子振动配分函数的封闭形式由下式给出

其中
是 N2 的基态振动频率,单位为 s-1
- h 是普朗克常数,等于
Js
由于我们只关心振动能态,并且只有一个 N2 分子,因此这等效于 Q。从分子配分函数 q 中确定配分函数 Q 的方程由下式给出

其中
N2 的基态振动频率以波数表示为
,为 2358.6 cm-1 [1]
以 s-1 表示的基态振动频率由下式给出

其中
- c 是光速,等于
cm/s
对于 N2,
= (2358.6cm-1) × (2.9979 × 1010| cm/s) = 7.0708 × 1013</math>
对于 298 K 时的 N2,

振动能级遵循量子力学谐振子的规律。能级由以下公式表示:

其中
对于基态(n=0),能量变为

由于振动零点能并不为零,所以能级是相对于 n=0 能级定义的。这在上述分子配分函数中使用,因此,基态被认为具有零能量。
对于 N2,在 298 K 时处于基态的概率为



这意味着在室温下,N2 分子处于基态振动状态的概率为 99.9988667%。
- ↑ Lide, D. R., (84th ed.). (2003-2004). Handbook of Chemistry and Physics. pg.9-85.
推导出线性双原子分子旋转态 i 的粒子数公式。绘制 298 K 时 N2 的旋转态分布柱状图。
1. 旋转态 i 的粒子数公式
对于双原子分子,可以近似为刚性转子。求解刚性转子的薛定谔方程,得到分子在 J 态的能级

其中
是总旋转角动量的量子数;
是以 cm-1 为单位的旋转常数。
,
其中
是 普朗克常数;
是真空中光速,单位为 cm/s;
是惯性矩。
,
其中
是约化质量,
是键长。
根据 麦克斯韦-玻尔兹曼分布,旋转能级 i 与基态相比的粒子数比例为

其中
是能级的简并度;
是能级能量;
是 玻尔兹曼常数,
是温度。
将
,
和能级 i 的简并度
代入该方程,可得

对于 N2,状态 i 的粒子数为

将常数部分合并,定义常数
.
氮气的折合质量 μ 为 7.00D a=1.16×10-26 kg,N2 的键长 r 为 110 pm = 1.10×10-10m。
代入 T = 298 K,
通过状态求和,qrot=1/a = 104,因此 N2 在 298 K 下占据基态振动状态的概率为 1/104 = 9.60×10-3
N2 在 298 K 下的转动状态分布的条形图是
氮气在 298 K 下的转动状态分布图。
估计一个 N2 分子在 298 K 下 1 m3 容器中可用的平动状态数。
用于确定 N2 分子在 298 K 下平动状态的方程如下所示。


其中
(V,T) 代表平动配分函数,
代表粒子的质量,单位为千克 (kg),
代表玻尔兹曼常数
,
代表温度,单位为开尔文
,
代表普朗克常数
,
代表三维空间中的体积,单位为
.
求解这个问题的步骤如下所示
m =
amu
m = 
m = 
因此,在 298 K 时,N2 应该有
个平动状态。
计算 N2 和 Cl2 在 298 K 下的德布罗意波长、转动温度和振动温度。

其中
- m 是分子的质量。
- 玻尔兹曼常数 kB = 1.3806488×10-23 J K-1
- 普朗克常数 h = 6.62606957×10-34 J s
对于 298K 下的 N2,







对于 298K 下的 Cl2,







德布罗意波长单位转换




其中
- 普朗克常数

- μ 是约化质量。
- re 是分子中两个原子之间的键长
对于 N2,
- re = 1.09769Å = 1.09769×10-10m [1]







对于Cl2,
- re = 1.988Å = 1.988×10-10m [2]







旋转温度的单位转换





其中
是分子的振动频率,以波数表示。
- 光速 c = 2.99792458×1010cm s-1
对于 N2,
[1]
- × 10 10 c m s − 1 ) 1.3806488 × 10 − 23 J K − 1 {\displaystyle \Theta _{v}={\frac {(6.62606957\times 10^{-34}Js)(2358.57cm^{-1})(2.99792458\times 10^{10}cms^{-1})}{1.3806488\times 10^{-23}JK^{-1}}}}



对于Cl2,
[2]



- ↑ a b Lide, D. R., (84th ed.). (2003-2004). Handbook of Chemistry and Physics. CRC Press. pg.9-85.
- ↑ a b Lide, D. R., (84th ed.). (2003-2004). Handbook of Chemistry and Physics. CRC Press. pg.9-83.
分子 |
N2 |
Cl2 |
 |
1.91×10-11 m |
1.20×10-11m |
 |
2.87 K |
0.351 K |
 |
3.39×103 K |
805 K |
在什么温度下,N2处于振动基态的概率会降至50%?
50% 的 N2 分子处于基态,50% 处于激发态。因此,种群可以用以下等式表示

从 NIST Webbook 中获取的 N2 分子的
波数值为 2358.57 cm-1
这可以通过以下关系转换为基本振动频率:

- 其中
是分子在 cm-1 中的基本波数。
是光速,2.998x1010 cm/s 通过了解这种关系,可以计算出基本振动频率。

- 系统的种群可以用以下等式表示

- 其中
是基态分子的种群
是基态的能量
是玻尔兹曼常数,1.38064853 \times 10-23 J/K
是系统的温度,以 K 为单位。
是分子振动配分函数。
与以下公式相关联。

- 其中
- h 是普朗克常数,6.626*10-34 J*s。
- 了解这些关系,我们就可以在分子降低到 50% 基态时求解系统的温度,此时 50% 的分子处于基态,50% 的分子处于激发态。



- 知道
的值,我们就可以求解分子振动配分函数,得到 50% 的分子处于基态时 T 的精确值。










- 因此,将普朗克常数、基本振动频率和玻尔兹曼常数代入方程式,我们可以得到当一半的分子处于基态时的温度。

- 当50%的N2分子处于基态振动时,温度为4895 K。