二项式定理是代数中的一个基本定理,它提供了一个公式来展开二项式的幂。它允许我们轻松地展开表达式, ( a + b ) n {\displaystyle (a+b)^{n}} ,其中 a {\displaystyle a} 和 b {\displaystyle b} 是实数或变量, n ≥ 0 {\displaystyle n\geq 0} 。
命题:对于任何实数 a , b {\displaystyle a,b} 和 n ≥ 0 , {\displaystyle n\geq 0,} ( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k {\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k}} 其中 ( n k ) = n ! k ! ( n − k ) ! {\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}}
证明(数学归纳法)
对于 n = 0 , ( a + b ) n = ( a + b ) 0 = 1 {\displaystyle n=0,(a+b)^{n}=(a+b)^{0}=1}
对于 n = 1 , ( a + b ) n = ( a + b ) 1 = ( a + b ) {\displaystyle n=1,(a+b)^{n}=(a+b)^{1}=(a+b)}
对于 n = 2 , ( a + b ) n = ( a + b ) 2 {\displaystyle n=2,(a+b)^{n}=(a+b)^{2}} = a 2 + 2 a b + b 2 {\displaystyle =a^{2}+2ab+b^{2}} = ( 2 0 ) a 2 b 0 + ( 2 1 ) a 1 b 1 + ( 2 2 ) a 0 b 2 {\displaystyle ={\binom {2}{0}}a^{2}b^{0}+{\binom {2}{1}}a^{1}b^{1}+{\binom {2}{2}}a^{0}b^{2}} = ∑ k = 0 2 ( 2 k ) a 2 − k b k {\displaystyle =\sum _{k=0}^{2}{\binom {2}{k}}a^{2-k}b^{k}}
对于 n = 3 , ( a + b ) n = ( a + b ) 3 {\displaystyle n=3,(a+b)^{n}=(a+b)^{3}} = a 3 + 3 a 2 b + 3 a b 2 + b 3 {\displaystyle =a^{3}+3a^{2}b+3ab^{2}+b^{3}} = ( 3 0 ) a 3 b 0 + ( 3 1 ) a 2 b 1 + ( 3 2 ) a 1 b 2 + ( 3 3 ) a 0 b 3 {\displaystyle ={\binom {3}{0}}a^{3}b^{0}+{\binom {3}{1}}a^{2}b^{1}+{\binom {3}{2}}a^{1}b^{2}+{\binom {3}{3}}a^{0}b^{3}} = ∑ k = 0 3 ( 3 k ) a 3 − k b k {\displaystyle =\sum _{k=0}^{3}{\binom {3}{k}}a^{3-k}b^{k}}
假设 ( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k {\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k}} 对于某些 a ≥ 0. {\displaystyle a\geq 0.} 现在我们只需要证明这个方程对于 n + 1. {\displaystyle n+1.} 成立。
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k {\displaystyle (a+b)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k}}
或者, ( a + b ) n ( a + b ) = ( ∑ k = 0 n ( n k ) a n − k b k ) ( a + b ) {\displaystyle (a+b)^{n}(a+b)=(\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b^{k})(a+b)}
= ( ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + ( n 2 ) a n − 2 b 2 + . . . + ( n n ) a 0 b n ) ( a + b ) {\displaystyle =({\binom {n}{0}}a^{n}b^{0}+{\binom {n}{1}}a^{n-1}b^{1}+{\binom {n}{2}}a^{n-2}b^{2}+...+{\binom {n}{n}}a^{0}b^{n})(a+b)}
= a ( ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + ( n 2 ) a n − 2 b 2 + . . . + ( n n ) a 0 b n ) + b ( ( n 0 ) a n b 0 + ( n 1 ) a n − 1 b 1 + ( n 2 ) a n − 2 b 2 + . . . + ( n n ) a 0 b n ) {\displaystyle =a({\binom {n}{0}}a^{n}b^{0}+{\binom {n}{1}}a^{n-1}b^{1}+{\binom {n}{2}}a^{n-2}b^{2}+...+{\binom {n}{n}}a^{0}b^{n})+b({\binom {n}{0}}a^{n}b^{0}+{\binom {n}{1}}a^{n-1}b^{1}+{\binom {n}{2}}a^{n-2}b^{2}+...+{\binom {n}{n}}a^{0}b^{n})}
= ( ( n 0 ) a n + 1 b 0 + ( n 1 ) a n b 1 + ( n 2 ) a n − 1 b 2 + . . . + ( n n ) a b n ) + ( ( n 0 ) a n b 1 + ( n 1 ) a n − 1 b 2 + ( n 2 ) a n − 2 b 3 + . . . + ( n n ) a 0 b n + 1 ) {\displaystyle =({\binom {n}{0}}a^{n+1}b^{0}+{\binom {n}{1}}a^{n}b^{1}+{\binom {n}{2}}a^{n-1}b^{2}+...+{\binom {n}{n}}ab^{n})+({\binom {n}{0}}a^{n}b^{1}+{\binom {n}{1}}a^{n-1}b^{2}+{\binom {n}{2}}a^{n-2}b^{3}+...+{\binom {n}{n}}a^{0}b^{n+1})}
= ( n 0 ) a n + 1 b 0 + a n b 1 ( ( n 1 ) + ( n 0 ) ) + a n − 1 b 2 ( ( n 2 ) + ( n 1 ) ) + . . . + a b n ( ( n n ) + ( n n − 1 ) ) + ( n n ) a 0 b n + 1 ) {\displaystyle ={\binom {n}{0}}a^{n+1}b^{0}+a^{n}b^{1}({\binom {n}{1}}+{\binom {n}{0}})+a^{n-1}b^{2}({\binom {n}{2}}+{\binom {n}{1}})+...+ab^{n}({\binom {n}{n}}+{\binom {n}{n-1}})+{\binom {n}{n}}a^{0}b^{n+1})}
= ( n + 1 0 ) a n + 1 b 0 + ( n + 1 1 ) a n b 1 + ( n + 1 2 ) a n − 1 b 2 + . . . + ( n + 1 n ) a b n + ( n + 1 n + 1 ) a 0 b n + 1 ) {\displaystyle ={\binom {n+1}{0}}a^{n+1}b^{0}+{\binom {n+1}{1}}a^{n}b^{1}+{\binom {n+1}{2}}a^{n-1}b^{2}+...+{\binom {n+1}{n}}ab^{n}+{\binom {n+1}{n+1}}a^{0}b^{n+1})}
∴ ( a + b ) n + 1 = ∑ k = 0 n + 1 ( n + 1 k ) a n + 1 − k b k {\displaystyle (a+b)^{n+1}=\sum _{k=0}^{n+1}{\binom {n+1}{k}}a^{n+1-k}b^{k}}