乘积法则、商法则和复合(或链)法则微积分中最基本的法则或公式。对于函数 u ( x ) {\displaystyle u(x)} 和 v ( x ) {\displaystyle v(x)} ,这些法则为:
D x ( u v ) {\displaystyle D_{x}(uv)} = lim Δ x → 0 Δ ( u v ) Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {\Delta (uv)}{\Delta x}}} = lim Δ x → 0 u ( x + Δ x ) ⋅ v ( x + Δ x ) − u ( x ) ⋅ v ( x ) Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {u(x+\Delta x)\cdot v(x+\Delta x)-u(x)\cdot v(x)}{\Delta x}}} = lim Δ x → 0 u ( x + Δ x ) ⋅ v ( x + Δ x ) − u ( x ) ⋅ v ( x + Δ x ) + u ( x ) ⋅ v ( x + Δ x ) − u ( x ) ⋅ v ( x ) Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {u(x+\Delta x)\cdot v(x+\Delta x)-u(x)\cdot v(x+\Delta x)+u(x)\cdot v(x+\Delta x)-u(x)\cdot v(x)}{\Delta x}}} = lim Δ x → 0 [ u ( x + Δ x ) − u ( x ) ] ⋅ v ( x + Δ x ) + u ( x ) ⋅ [ v ( x + Δ x ) − v ( x ) ] Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {[u(x+\Delta x)-u(x)]\cdot v(x+\Delta x)+u(x)\cdot [v(x+\Delta x)-v(x)]}{\Delta x}}} = lim Δ x → 0 ( Δ u ) ⋅ v ( x + Δ x ) + u ( x ) ⋅ ( Δ v ) Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {(\Delta u)\cdot v(x+\Delta x)+u(x)\cdot (\Delta v)}{\Delta x}}} = lim Δ x → 0 [ Δ u Δ x ⋅ v ( x + Δ x ) + Δ v Δ x ⋅ u ( x ) ] {\displaystyle =\lim _{\Delta x\to 0}[{\frac {\Delta u}{\Delta x}}\cdot v(x+\Delta x)+{\frac {\Delta v}{\Delta x}}\cdot u(x)]} = lim Δ x → 0 [ D x u ⋅ v ( x + Δ x ) + u ⋅ D x v ] {\displaystyle =\lim _{\Delta x\to 0}[D_{x}u\cdot v(x+\Delta x)+u\cdot D_{x}v]} = v ⋅ D x u + u ⋅ D x v {\displaystyle =v\cdot D_{x}u+u\cdot D_{x}v}
∴ D x ( u v ) = v ⋅ D x u + u ⋅ D x v {\displaystyle \therefore D_{x}(uv)=v\cdot D_{x}u+u\cdot D_{x}v} [已证明]
D x ( u v ) {\displaystyle D_{x}({\frac {u}{v}})} = lim Δ x → 0 Δ ( u v ) Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {\Delta ({\frac {u}{v}})}{\Delta x}}} = lim Δ x → 0 1 Δ x ⋅ [ u ( x + Δ x ) v ( x + Δ x ) − u ( x ) v ( x ) ] {\displaystyle =\lim _{\Delta x\to 0}{\frac {1}{\Delta x}}\cdot [{\frac {u(x+\Delta x)}{v(x+\Delta x)}}-{\frac {u(x)}{v(x)}}]} = lim Δ x → 0 1 Δ x ⋅ [ u ( x + Δ x ) ⋅ v ( x ) − u ( x ) ⋅ v ( x + Δ x ) v ( x ) ⋅ v ( x + Δ x ) ] {\displaystyle =\lim _{\Delta x\to 0}{\frac {1}{\Delta x}}\cdot [{\frac {u(x+\Delta x)\cdot v(x)-u(x)\cdot v(x+\Delta x)}{v(x)\cdot v(x+\Delta x)}}]} = lim Δ x → 0 1 Δ x ⋅ [ u ( x + Δ x ) ⋅ v ( x ) − v ( x ) ⋅ u ( x ) + v ( x ) ⋅ u ( x ) − u ( x ) ⋅ v ( x + Δ x ) v ( x ) ⋅ v ( x + Δ x ) ] {\displaystyle =\lim _{\Delta x\to 0}{\frac {1}{\Delta x}}\cdot [{\frac {u(x+\Delta x)\cdot v(x)-v(x)\cdot u(x)+v(x)\cdot u(x)-u(x)\cdot v(x+\Delta x)}{v(x)\cdot v(x+\Delta x)}}]} = lim Δ x → 0 1 Δ x ⋅ [ v ( x ) ⋅ ( u ( x + Δ x ) − u ( x ) ) + u ( x ) ⋅ ( v ( x ) − v ( x + Δ x ) v ( x ) ⋅ v ( x + Δ x ) ] {\displaystyle =\lim _{\Delta x\to 0}{\frac {1}{\Delta x}}\cdot [{\frac {v(x)\cdot (u(x+\Delta x)-u(x))+u(x)\cdot (v(x)-v(x+\Delta x)}{v(x)\cdot v(x+\Delta x)}}]} = lim Δ x → 0 1 Δ x ⋅ [ v ( x ) ⋅ ( Δ u ) + u ( x ) ⋅ ( Δ v ) v ( x ) ⋅ v ( x + Δ x ) ] {\displaystyle =\lim _{\Delta x\to 0}{\frac {1}{\Delta x}}\cdot [{\frac {v(x)\cdot (\Delta u)+u(x)\cdot (\Delta v)}{v(x)\cdot v(x+\Delta x)}}]} = lim Δ x → 0 v ( x ) ⋅ ( Δ u ) Δ x + u ( x ) ⋅ ( Δ v ) Δ x v ( x ) ⋅ v ( x + Δ x ) {\displaystyle =\lim _{\Delta x\to 0}{\frac {{\frac {v(x)\cdot (\Delta u)}{\Delta x}}+{\frac {u(x)\cdot (\Delta v)}{\Delta x}}}{v(x)\cdot v(x+\Delta x)}}} = lim Δ x → 0 v ( x ) ⋅ Δ u Δ x + u ( x ) ⋅ Δ v Δ x v ( x ) ⋅ v ( x + Δ x ) {\displaystyle =\lim _{\Delta x\to 0}{\frac {v(x)\cdot {\frac {\Delta u}{\Delta x}}+u(x)\cdot {\frac {\Delta v}{\Delta x}}}{v(x)\cdot v(x+\Delta x)}}} = lim Δ x → 0 v ( x ) ⋅ D x u + u ( x ) ⋅ D x v v ( x ) ⋅ v ( x + Δ x ) {\displaystyle =\lim _{\Delta x\to 0}{\frac {v(x)\cdot D_{x}u+u(x)\cdot D_{x}v}{v(x)\cdot v(x+\Delta x)}}} = v ( x ) ⋅ D x u + u ( x ) ⋅ D x v v ( x ) ⋅ v ( x ) {\displaystyle ={\frac {v(x)\cdot D_{x}u+u(x)\cdot D_{x}v}{v(x)\cdot v(x)}}} = v ⋅ D x u + u ⋅ D x v v 2 {\displaystyle ={\frac {v\cdot D_{x}u+u\cdot D_{x}v}{v^{2}}}}
∴ D x ( u v ) = v ⋅ D x u − u ⋅ D x v v 2 {\displaystyle \therefore D_{x}({\frac {u}{v}})={\frac {v\cdot D_{x}u-u\cdot D_{x}v}{v^{2}}}}
D x v {\displaystyle D_{x}v} = lim Δ x → 0 Δ v Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {\Delta v}{\Delta x}}} = lim Δ x → 0 Δ v ⋅ Δ y Δ x ⋅ Δ y {\displaystyle =\lim _{\Delta x\to 0}{\frac {\Delta v\cdot \Delta y}{\Delta x\cdot \Delta y}}} = lim Δ x → 0 Δ v Δ y ⋅ lim Δ x → 0 Δ y Δ x {\displaystyle =\lim _{\Delta x\to 0}{\frac {\Delta v}{\Delta y}}\cdot \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}} = lim Δ y → 0 Δ v Δ y ⋅ lim Δ x → 0 Δ y Δ x {\displaystyle =\lim _{\Delta y\to 0}{\frac {\Delta v}{\Delta y}}\cdot \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}} = D y v ⋅ D x y {\displaystyle =D_{y}v\cdot D_{x}y}
∴ D x v = D y v ⋅ D x y {\displaystyle \therefore D_{x}v=D_{y}v\cdot D_{x}y}