有理根定理指出,如果一个有理数 p q {\displaystyle {\frac {p}{q}}} (其中 p {\displaystyle p} 和 q {\displaystyle q} 互质)是具有整数系数的多项式的根,则 p {\displaystyle p} 是常数项的因子, q {\displaystyle q} 是最高次项系数的因子。换句话说,对于多项式 P ( x ) = a n x n + a n − 1 x n − 1 + a n − 2 x n − 2 + . . . + a 0 {\displaystyle P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{0}} ,如果 P ( p q ) = 0 {\displaystyle P\left({\frac {p}{q}}\right)=0} (其中 a i ∈ Z {\displaystyle a_{i}\in \mathbb {Z} } 且 a 0 , a n ≠ 0 {\displaystyle a_{0},a_{n}\neq 0} ),则 a 0 p ∈ Z {\displaystyle {\frac {a_{0}}{p}}\in \mathbb {Z} } 且 a n q ∈ Z {\displaystyle {\frac {a_{n}}{q}}\in \mathbb {Z} }
令 P ( x ) = a n x n + a n − 1 x n − 1 + a n − 2 x n − 2 + . . . + a 0 {\displaystyle P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{0}} ,其中 a i ∈ Z {\displaystyle a_{i}\in \mathbb {Z} } 。
假设对于互质的 p , q ∈ Z {\displaystyle p,q\in \mathbb {Z} } , P ( p q ) = 0 {\displaystyle P({\frac {p}{q}})=0} 。因此, P ( p q ) = a n ( p q ) n + a n − 1 ( p q ) n − 1 + a n − 2 ( p q ) n − 2 + . . . + a 1 ( p q ) + a 0 = 0 {\displaystyle P({\frac {p}{q}})=a_{n}({\frac {p}{q}})^{n}+a_{n-1}({\frac {p}{q}})^{n-1}+a_{n-2}({\frac {p}{q}})^{n-2}+...+a_{1}({\frac {p}{q}})+a_{0}=0} ⇒ a n p n + a n − 1 p n − 1 q + a n − 2 p n − 2 q 2 + . . . + a 1 p q n − 1 + a 0 q n = 0 {\displaystyle \Rightarrow a_{n}p^{n}+a_{n-1}p^{n-1}q+a_{n-2}p^{n-2}q^{2}+...+a_{1}pq^{n-1}+a_{0}q^{n}=0} ⇒ p ( a n p n − 1 + a n − 1 p n − 2 q + a n − 3 p n − 2 q 2 + . . . + a 1 q n − 1 ) = − a 0 q n {\displaystyle \Rightarrow p(a_{n}p^{n}-1+a_{n-1}p^{n-2}q+a_{n-3}p^{n-2}q^{2}+...+a_{1}q^{n-1})=-a_{0}q^{n}}
令 w = a n p n − 1 + a n − 1 p n − 2 q + a n − 3 p n − 2 q 2 + . . . + a 1 q n − 1 ∈ Z {\displaystyle w=a_{n}p^{n}-1+a_{n-1}p^{n-2}q+a_{n-3}p^{n-2}q^{2}+...+a_{1}q^{n-1}\in \mathbb {Z} }
因此, w = − a 0 q n p {\displaystyle w=-{\frac {a_{0}q^{n}}{p}}}
由于 p {\displaystyle p} 与 q {\displaystyle q} 互质,且 w ∈ Z . {\displaystyle w\in \mathbb {Z} .} ,因此 a 0 p ∈ Z {\displaystyle {\frac {a_{0}}{p}}\in \mathbb {Z} } .
再次, a n p n + a n − 1 p n − 1 q + a n − 2 p n − 2 q 2 + . . . + a 1 p q n − 1 + a 0 q n = 0 {\displaystyle a_{n}p^{n}+a_{n-1}p^{n-1}q+a_{n-2}p^{n-2}q^{2}+...+a_{1}pq^{n-1}+a_{0}q^{n}=0} ⇒ q ( a n − 1 p n − 1 + a n − 2 p n − 2 q + . . . + a 1 p q n − 2 + a 0 q n − 1 ) = − a n p n {\displaystyle \Rightarrow q(a_{n-1}p^{n-1}+a_{n-2}p^{n-2}q+...+a_{1}pq^{n-2}+a_{0}q^{n-1})=-a_{n}p^{n}}
令 ( a n − 1 p n − 1 + a n − 2 p n − 2 q + . . . + a 1 p q n − 2 + a 0 q n − 1 ) = v ∈ Z {\displaystyle (a_{n-1}p^{n-1}+a_{n-2}p^{n-2}q+...+a_{1}pq^{n-2}+a_{0}q^{n-1})=v\in \mathbb {Z} }
因此, q v = − a n p n {\displaystyle qv=-a_{n}p^{n}} ⇒ v = − a n p n q {\displaystyle \Rightarrow v=-{\frac {a_{n}p^{n}}{q}}}
由于 q {\displaystyle q} 与 p {\displaystyle p} 互质,并且 v ∈ Z . {\displaystyle v\in \mathbb {Z} .} ,因此 a n p ∈ Z {\displaystyle {\frac {a_{n}}{p}}\in \mathbb {Z} } .
∴ {\displaystyle \therefore } 对于 P ( x ) = a n x n + a n − 1 x n − 1 + a n − 2 x n − 2 + . . . + a 0 {\displaystyle P(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{0}} ,如果 P ( p q ) = 0 {\displaystyle P({\frac {p}{q}})=0} (其中 a i ∈ Z {\displaystyle a_{i}\in \mathbb {Z} } 且 a 0 , a n ≠ 0 {\displaystyle a_{0},a_{n}\neq 0} ),那么 ( a 0 ) p ∈ Z {\displaystyle {\frac {(a_{0})}{p}}\in \mathbb {Z} } 且 a n q ∈ Z {\displaystyle {\frac {a_{n}}{q}}\in \mathbb {Z} } 。 [已证明]