(a) 令 f , g {\displaystyle f,g} 为定义在 [ 0 , 1 ] {\displaystyle [0,1]} 上的实值可测函数,并具有以下性质:对于每个 x ∈ [ 0 , 1 ] {\displaystyle x\in [0,1]} , g {\displaystyle g} 在 x {\displaystyle x} 处可微且 g ′ ( x ) = ( f ( x ) ) 2 . {\displaystyle g'(x)=(f(x))^{2}.}
证明 f ∈ L 1 [ 0 , 1 ] {\displaystyle f\in L^{1}[0,1]}
(b) 另外,假设 f {\displaystyle f} 在 [ 0 , 1 ] . {\displaystyle [0,1].} 上有界。证明
2 ∫ 0 1 g ( x ) f 2 ( x ) d x = g 2 ( 1 ) − g 2 ( 0 ) . {\displaystyle 2\int _{0}^{1}g(x)f^{2}(x)\,dx=g^{2}(1)-g^{2}(0).}
令 f ∈ L 1 ( − ∞ , ∞ ) {\displaystyle f\in L^{1}(-\infty ,\infty )\!\,} ,并假设 α > 0 {\displaystyle \alpha >0\!\,} 。设 f n ( x ) = f ( n x ) n α {\displaystyle f_{n}(x)={\frac {f(nx)}{n^{\alpha }}}\!\,} 对于 n = 1 , 2 , … {\displaystyle n=1,2,\ldots \!\,} 。证明对于几乎所有 x ∈ ( − ∞ , ∞ ) {\displaystyle x\in (-\infty ,\infty )\!\,} ,
lim n → ∞ f n ( x ) = 0 {\displaystyle \lim _{n\rightarrow \infty }f_{n}(x)=0\!\,}
通过变量替换(令 u=nx),我们得到
∫ | f n ( x ) | d x = ∫ | f ( u ) | n α + 1 d u ( ∗ ) {\displaystyle \int |f_{n}(x)|dx=\int {\frac {|f(u)|}{n^{\alpha +1}}}du\quad \quad (*)\!\,}
定义 u n ( x ) = ∑ i = 1 n | f i ( x ) | {\displaystyle u_{n}(x)=\sum _{i=1}^{n}|f_{i}(x)|\!\,} .
那么, u n {\displaystyle u_{n}\!\,} 是一个非负递增函数,收敛于 ∑ i = 1 ∞ | f i ( x ) | {\displaystyle \sum _{i=1}^{\infty }|f_{i}(x)|\!\,} .
因此,根据单调收敛定理和 ( ∗ ) {\displaystyle (*)\!\,}
∫ ∑ i = 1 ∞ | f i ( x ) | d x = ∑ i = 1 ∞ ∫ | f i ( x ) | d x = ∑ i = 1 ∞ ∫ | f ( x ) | i α + 1 d x = ( ∫ | f ( x ) | d x ) ( ∑ i = 1 ∞ 1 i α + 1 ) < ∞ {\displaystyle {\begin{aligned}\int \sum _{i=1}^{\infty }|f_{i}(x)|dx&=\sum _{i=1}^{\infty }\int |f_{i}(x)|dx\\&=\sum _{i=1}^{\infty }\int {\frac {|f(x)|}{i^{\alpha +1}}}dx\\&=\left(\int |f(x)|dx\right)\left(\sum _{i=1}^{\infty }{\frac {1}{i^{\alpha +1}}}\right)\\&<\infty \end{aligned}}\!\,}
其中最后一个不等式成立,因为级数收敛 ( α > 0 {\displaystyle \alpha >0\!\,} ) 并且 f ∈ L 1 {\displaystyle f\in L^{1}\!\,}
由于
∫ ∑ i = 1 ∞ | f i ( x ) | d x < ∞ {\displaystyle \int \sum _{i=1}^{\infty }|f_{i}(x)|dx<\infty \!\,} ,
我们几乎处处有
∑ i = 1 ∞ | f i ( x ) | < ∞ {\displaystyle \sum _{i=1}^{\infty }|f_{i}(x)|<\infty \!\,}
这意味着我们想要的结果
lim i → ∞ f i ( x ) = 0 a.e. {\displaystyle \lim _{i\rightarrow \infty }f_{i}(x)=0\quad {\mbox{a.e.}}\!\,}