令 f ∈ A C [ 0 , 1 ] {\displaystyle f\in AC[0,1]} 是 [0,1] 上的绝对连续函数,且 f > 0 {\displaystyle f>0} 。证明 1 / f ∈ A C [ 0 , 1 ] {\displaystyle 1/f\in AC[0,1]} .
由于 f {\displaystyle f} 是(绝对)连续的,且 f > 0 {\displaystyle f>0} ,则存在某个 0 < m = min x ∈ [ 0 , 1 ] f ( x ) {\displaystyle 0<m=\min _{x\in [0,1]}f(x)} .
由于 f ∈ A C [ 0 , 1 ] {\displaystyle f\in AC[0,1]} ,对于任意 ϵ > 0 {\displaystyle \epsilon >0} ,都存在某个 δ > 0 {\displaystyle \delta >0} 使得对于任意有限个不相交的区间集合 I k = ( x k , y k ) , k = 1 , . . . , n {\displaystyle I_{k}=(x_{k},y_{k}),k=1,...,n} ,若 ∑ k = 1 n | y k − x k | < δ {\displaystyle \sum _{k=1}^{n}|y_{k}-x_{k}|<\delta } ,则 ∑ k = 1 n | f ( y k ) − f ( x k ) | < ϵ m 2 {\displaystyle \sum _{k=1}^{n}|f(y_{k})-f(x_{k})|<\epsilon m^{2}} .
那么对于上述任何区间集合,我们有 ∑ k = 1 n | 1 f ( y k ) − 1 f ( x k ) = ∑ k = 1 n | f ( x k ) − f ( y k ) f ( y k ) f ( x k ) | ≤ ∑ k = 1 n 1 m 2 | f ( y k ) − f ( x k ) | < ϵ {\displaystyle \sum _{k=1}^{n}|{\frac {1}{f(y_{k})}}-{\frac {1}{f(x_{k})}}=\sum _{k=1}^{n}|{\frac {f(x_{k})-f(y_{k})}{f(y_{k})f(x_{k})}}|\leq \sum _{k=1}^{n}{\frac {1}{m^{2}}}|f(y_{k})-f(x_{k})|<\epsilon } .