令D为矩形
并令C为D的边界。
算子
是通常的拉普拉斯算子。问题是,确定一个函数 u(x, y) 使得
被称为泊松问题。
为了数值逼近 u(x, y),使用网格
.
其中
以及
二阶偏导数
可以用差商在网格上进行逼近
.
这些差商由以下公式给出:
.
.
− 1 12 u ( x i + 2 h , y j ) + 4 3 u ( x i + h , y j ) − 5 2 u ( x i , y j ) + 4 3 u ( x i − h , y j ) − 1 12 u ( x i − 2 h , y j ) h 2 {\displaystyle {-{\frac {1}{12}}\,u(x_{i}+2\,h,y_{j})+{\frac {4}{3}}\,u(x_{i}+h,y_{j})-{\frac {5}{2}}\,u(x_{i},y_{j})+{\frac {4}{3}}\,u(x_{i}-h,y_{j})-{\frac {1}{12}}\,u(x_{i}-2\,h,y_{j}) \over \ h^{2}}}
for i = 2 , 3 , … m − 1 and {\displaystyle {\text{for}}\ i\,=\,2,\ 3,\ \ldots \,m-1\quad {\text{and}}}
( ∂ h 2 ∂ h x 2 ) u ( x m , y j ) = {\displaystyle ({\partial _{h}^{2} \over \partial _{h}x^{2}})\ u(x_{m},y_{j})\ =} .
11 12 u ( x m + h , y j ) − 5 3 u ( x m , y j ) + 1 2 u ( x m − h , y j ) + 1 3 u ( x m − 2 h , y j ) − 1 12 u ( x m − 3 h , y j ) h 2 {\displaystyle {{\frac {11}{12}}\,u(x_{m}+h,y_{j})-{\frac {5}{3}}\,u(x_{m},y_{j})+{\frac {1}{2}}\,u(x_{m}-h,y_{j})+{\frac {1}{3}}\,u(x_{m}-2\,h,y_{j})-{\frac {1}{12}}\,u(x_{m}-3\,h,y_{j}) \over \ h^{2}}}
二阶偏导数
∂ 2 ∂ y 2 u ( x , y ) {\displaystyle {\partial ^{2} \over \partial y^{2}}\ u(x,y)}
可以用差商在网格上进行逼近
( ∂ k 2 ∂ k y 2 ) u ( x i , y j ) {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{j})} .
这些差商由以下公式给出:
( ∂ k 2 ∂ k y 2 ) u ( x i , y 1 ) = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{1})\ =} .
− 1 12 u ( x i , y 1 + 3 k ) + 1 3 u ( x i , y 1 + 2 k ) + 1 2 u ( x i , y 1 + k ) − 5 3 u ( x i , y 1 ) + 11 12 u ( x i , y 1 − k ) k 2 {\displaystyle {-{\frac {1}{12}}\,u(x_{i},y_{1}+3\,k)+{\frac {1}{3}}\,u(x_{i},y_{1}+2\,k)+{\frac {1}{2}}\,u(x_{i},y_{1}+k)-{\frac {5}{3}}\,u(x_{i},y_{1})+{\frac {11}{12}}\,u(x_{i},y_{1}-k) \over \ k^{2}}}
( ∂ k 2 ∂ k y 2 ) u ( x i , y j ) = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{j})\ =} .
− 1 12 u ( x i , y j + 2 k ) + 4 3 u ( x i , y j + k ) − 5 2 u ( x i , y j ) + 4 3 u ( x i , y j − k ) − 1 12 u ( x i , y j − 2 k ) k 2 {\displaystyle {-{\frac {1}{12}}\,u(x_{i},y_{j}+2\,k)+{\frac {4}{3}}\,u(x_{i},y_{j}+k)-{\frac {5}{2}}\,u(x_{i},y_{j})+{\frac {4}{3}}\,u(x_{i},y_{j}-k)-{\frac {1}{12}}\,u(x_{i},y_{j}-2\,k) \over \ k^{2}}}
for j = 2 , 3 , … n − 1 and {\displaystyle {\text{for}}\ j\,=\,2,\ 3,\ \ldots \,n-1\quad {\text{and}}}
( ∂ k 2 ∂ k y 2 ) u ( x i , y n ) = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{n})\ =} .
11 12 u ( x i , y n + k ) − 5 3 u ( x i , y n ) + 1 2 u ( x i , y n − k ) + 1 3 u ( x i , y n − 2 k ) − 1 12 u ( x i , y n − 3 k ) k 2 {\displaystyle {{\frac {11}{12}}\,u(x_{i},y_{n}+k)-{\frac {5}{3}}\,u(x_{i},y_{n})+{\frac {1}{2}}\,u(x_{i},y_{n}-k)+{\frac {1}{3}}\,u(x_{i},y_{n}-2\,k)-{\frac {1}{12}}\,u(x_{i},y_{n}-3\,k) \over \ k^{2}}}
差商 ( ∂ h 2 ∂ h x 2 ) u ( x i , y j ) {\displaystyle ({\partial _{h}^{2} \over \partial _{h}x^{2}})\ u(x_{i},y_{j})} 是三阶精度的,具有截断误差
τ x ( x i , y j ) = ( ∂ h 2 ∂ h x 2 ) u ( x i , y j ) − ∂ 2 ∂ x 2 u ( x i , y j ) = h 3 120 M x ( 5 ) ( x i , y j ) {\displaystyle {\begin{aligned}\tau _{x}(x_{i},y_{j})&=({\partial _{h}^{2} \over \partial _{h}x^{2}})\ u(x_{i},y_{j})-{\partial ^{2} \over \partial x^{2}}\ u(x_{i},y_{j})\\&={h^{3} \over \ 120}\,M{_{x}^{(5)}}(x_{i},y_{j})\end{aligned}}}
其中
M x ( 5 ) ( x 1 , y j ) = 67 6 ∂ 5 ∂ x 5 u ( x 1 + ϕ 1 ( 1 , j ) h , y j ) − 254 12 ∂ 5 ∂ x 5 u ( x 1 + ϕ 2 ( 1 , j ) h , y j ) {\displaystyle M{_{x}^{(5)}}(x_{1},y_{j})={\frac {67}{6}}\,{\partial ^{5} \over \partial x^{5}}\,u(x_{1}+\phi {_{1}^{(1,\,j)}}\,h,\ y_{j})-{\frac {254}{12}}\,{\partial ^{5} \over \partial x^{5}}\,u(x_{1}+\phi {_{2}^{(1,\,j)}}\,h,\ y_{j})} ,
对于 0 < ϕ 1 ( 1 , j ) < 2 , − 1 < ϕ 2 ( 1 , j ) < 3 {\displaystyle 0<\phi {_{1}^{(1,\,j)}}<2\,,\quad -1<\phi {_{2}^{(1,\,j)}}<3} ,
M x ( 5 ) ( x i , y j ) = 4 ∂ 5 ∂ x 5 u ( x i + ϕ 1 ( i , j ) h , y j ) − 4 ∂ 5 ∂ x 5 u ( x i + ϕ 2 ( i , j ) h , y j ) {\displaystyle M{_{x}^{(5)}}(x_{i},y_{j})=4\,{\partial ^{5} \over \partial x^{5}}\,u(x_{i}+\phi {_{1}^{(i,\,j)}}\,h,\ y_{j})-4\,{\partial ^{5} \over \partial x^{5}}\,u(x_{i}+\phi {_{2}^{(i,\,j)}}\,h,\ y_{j})} ,
对于 − 2 < ϕ 1 ( i , j ) < 1 , − 1 < ϕ 2 ( i , j ) < 2 , {\displaystyle -2<\phi {_{1}^{(i,\,j)}}<1\,,\quad -1<\phi {_{2}^{(i,\,j)}}<2\,,}
for i = 2 , 3 , … , m − 1. {\displaystyle {\text{for}}\ \ i\ =\ 2,\ 3,\ \ldots \,,\ m-1.}
当 ∂ 6 ∂ x 6 u ( x , y ) {\displaystyle {\partial ^{6} \over \partial x^{6}}\,u(x,\,y)} 连续时,这些估计也成立。
τ x ( x i , y j ) = h 4 720 M x 6 ( x i , y j ) , {\displaystyle \tau _{x}(x_{i},\,y_{j})\;=\;{h^{4} \over \ 720}M_{x}^{6}(x_{i},\,y_{j}),} 其中
M x 6 ( x i , y j ) = 8 3 ∂ 6 ∂ x 6 u ( x i + ϕ 1 ( i , j ) h , y j ) − 32 3 ∂ 6 ∂ x 6 u ( x i + ϕ 2 ( i , j ) h , y j ) {\displaystyle M_{x}^{6}(x_{i},\,y_{j})\;=\;{\frac {8}{3}}{\partial ^{6} \over \partial x^{6}}u(x_{i}+\phi {_{1}^{(i,\,j)}}\,h,\;y_{j})-{\frac {32}{3}}{\partial ^{6} \over \partial x^{6}}u(x_{i}+\phi {_{2}^{(i,\,j)}}\,h,\;y_{j})}
对于某个 − 1 < ϕ 1 ( i , j ) < 1 , − 2 < ϕ 2 ( i , j ) < 2 , {\displaystyle -1\;<\;\phi {_{1}^{(i,\,j)}}\;<\;1\,,\quad -2\;<\;\phi {_{2}^{(i,\,j)}}\;<\;2,}
for i = 2 , 3 , … , m − 1. {\displaystyle {\text{for}}\ \ i\ =\ 2,\ 3,\ \ldots \,,\ m-1.}
情况为 i = m {\displaystyle i\;=\;m} 是
M x ( 5 ) ( x m , y j ) = 254 12 ∂ 5 ∂ x 5 u ( x m + ϕ 1 ( m , j ) h , y j ) − 67 6 ∂ 5 ∂ x 5 u ( x m + ϕ 2 ( m , j ) h , y j ) {\displaystyle M{_{x}^{(5)}}(x_{m},y_{j})={\frac {254}{12}}\,{\partial ^{5} \over \partial x^{5}}\,u(x_{m}+\phi {_{1}^{(m,\,j)}}\,h,\ y_{j})-{\frac {67}{6}}\,{\partial ^{5} \over \partial x^{5}}\,u(x_{m}+\phi {_{2}^{(m,\,j)}}\,h,\ y_{j})} ,
对于某些 − 3 < ϕ 1 ( m , j ) < 1 , − 2 < ϕ 2 ( m , j ) < 0 {\displaystyle -3<\phi {_{1}^{(m,\,j)}}<1\,,\quad -2<\phi {_{2}^{(m,\,j)}}<0} 。
差商 ( ∂ k 2 ∂ k y 2 ) u ( x i , y j ) {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{j})} 是三阶精度的,带有截断误差
τ y ( x i , y i ) = ( ∂ k 2 ∂ k y 2 ) u ( x i , y 1 ) − ∂ 2 ∂ y 2 u ( x i , y 1 ) = k 3 120 M y ( 5 ) ( x i , y 1 ) {\displaystyle {\begin{aligned}\tau _{y}(x_{i},y_{i})&=({\partial _{k}^{2} \over \partial _{k}y^{2}})\ u(x_{i},y_{1})-{\partial ^{2} \over \partial y^{2}}\ u(x_{i},y_{1})\\&={k^{3} \over \ 120}\,M{_{y}^{(5)}}(x_{i},y_{1})\end{aligned}}}
其中
M y ( 5 ) ( x i , y 1 ) = 67 6 ∂ 5 ∂ y 5 u ( x i , y 1 + ψ 1 ( i , 1 ) k ) − 254 12 ∂ 5 ∂ y 5 u ( x i , y 1 + ψ 2 ( i , 1 ) k ) {\displaystyle M{_{y}^{(5)}}(x_{i},y_{1})={\frac {67}{6}}\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{1}+\psi {_{1}^{(i,\,1)}}\,k)-{\frac {254}{12}}\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{1}+\psi {_{2}^{(i,\,1)}}\,k)} ,
对于某些 0 < ψ 1 ( i , 1 ) < 2 , − 1 < ψ 2 ( i , 1 ) < 3 {\displaystyle 0<\psi {_{1}^{(i,\,1)}}<2\,,\quad -1<\psi {_{2}^{(i,\,1)}}<3} ,
M y ( 5 ) ( x i , y j ) = 4 ∂ 5 ∂ y 5 u ( x i , y j + ψ 1 ( i , j ) k ) − 4 ∂ 5 ∂ y 5 u ( x i , y j + ψ 2 ( i , j ) k ) {\displaystyle M{_{y}^{(5)}}(x_{i},y_{j})=4\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{j}+\psi {_{1}^{(i,\,j)}}\,k)-4\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{j}+\psi {_{2}^{(i,\,j)}}\,k)} ,
对于一些 − 2 < ψ 1 ( i , j ) < 1 , − 1 < ψ 2 ( i , j ) < 2 , {\displaystyle -2<\psi {_{1}^{(i,\,j)}}<1\,,\quad -1<\psi {_{2}^{(i,\,j)}}<2\,,}
for j = 2 , 3 , … , n − 1. {\displaystyle {\text{for}}\ \ j\ =\ 2,\ 3,\ \ldots \,,\ n-1.}
当 ∂ 6 ∂ y 6 u ( x , y ) {\displaystyle {\partial ^{6} \over \partial y^{6}}\,u(x,\,y)} 连续时,这些估计也成立。
τ y ( x i , y j ) = k 4 720 M y 6 ( x i , y j ) , {\displaystyle \tau _{y}(x_{i},\,y_{j})\;=\;{k^{4} \over \ 720}M_{y}^{6}(x_{i},\,y_{j}),} 其中
M y 6 ( x i , y j ) = 8 3 ∂ 6 ∂ y 6 u ( x i + ψ 1 ( i , j ) k , y j ) − 32 3 ∂ 6 ∂ y 6 u ( x i + ψ 2 ( i , j ) k , y j ) {\displaystyle M_{y}^{6}(x_{i},\,y_{j})\;=\;{\frac {8}{3}}{\partial ^{6} \over \partial y^{6}}u(x_{i}+\psi {_{1}^{(i,\,j)}}\,k,\;y_{j})-{\frac {32}{3}}{\partial ^{6} \over \partial y^{6}}u(x_{i}+\psi {_{2}^{(i,\,j)}}\,k,\;y_{j})}
对于一些 − 1 < ψ 1 ( i , j ) < 1 , − 2 < ψ 2 ( i , j ) < 2 , {\displaystyle -1\;<\;\psi {_{1}^{(i,\,j)}}\;<\;1\,,\quad -2\;<\;\psi {_{2}^{(i,\,j)}}\;<\;2,}
for j = 2 , 3 , … , n − 1. {\displaystyle {\text{for}}\ \ j\ =\ 2,\ 3,\ \ldots \,,\ n-1.}
当 j = n {\displaystyle j\;=\;n} 时的情况是
M y ( 5 ) ( x i , y n ) = 254 12 ∂ 5 ∂ y 5 u ( x i , y n + ψ 1 ( i , n ) k ) − 67 6 ∂ 5 ∂ y 5 u ( x i , y n + ψ 2 ( i , n ) k ) {\displaystyle M{_{y}^{(5)}}(x_{i},y_{n})={\frac {254}{12}}\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{n}+\psi {_{1}^{(i,\,n)}}\,k)-{\frac {67}{6}}\,{\partial ^{5} \over \partial y^{5}}\,u(x_{i},\ y_{n}+\psi {_{2}^{(i,\,n)}}\,k)} ,
对于一些 − 3 < ψ 1 ( i , n ) < 1 , − 2 < ψ 2 ( i , n ) < 0 {\displaystyle -3<\psi {_{1}^{(i,\,n)}}<1\,,\quad -2<\psi {_{2}^{(i,\,n)}}<0} .
然后,拉普拉斯算子 Δ u ( x , y ) {\displaystyle \Delta u(x,y)} 可以近似为网格的内部
Δ h , k u ( x i , y j ) = ∂ h 2 ∂ h x 2 u ( x i , y j ) + ∂ k 2 ∂ k y 2 u ( x i , y j ) {\displaystyle \Delta _{h,\,k}u(x_{i},y_{j})={\partial _{h}^{2} \over \partial _{h}x^{2}}u(x_{i},y_{j})+{\partial _{k}^{2} \over \partial _{k}y^{2}}u(x_{i},y_{j})}
截断误差
τ ( x i , y j ) = Δ h , k u ( x i , y j ) − Δ u ( x i , y j ) {\displaystyle \tau (x_{i},y_{j})=\Delta _{h,\,k}u(x_{i},y_{j})-\Delta u(x_{i},y_{j})}
由以下给出
τ ( x i , y j ) = τ x ( x i , y j ) + τ y ( x i , y j ) {\displaystyle \tau (x_{i},y_{j})=\tau _{x}(x_{i},y_{j})+\tau _{y}(x_{i},y_{j})} .
对于网格向量
U = { U i , j } 0 ≤ i ≤ m + 1 , 0 ≤ j ≤ n + 1 {\displaystyle U=\{U_{i,\,j}\}\quad 0\leq i\leq m+1,\ 0\leq j\leq n+1}
定义有限差分运算
Δ i , j = ( ∂ h 2 ∂ h x 2 ) i , j U + ( ∂ k 2 ∂ k y 2 ) i , j U {\displaystyle \Delta _{i,\,j}=({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,U+({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,U}
由以下公式给出。
( ∂ h 2 ∂ h x 2 ) 1 , j U = {\displaystyle ({\partial _{h}^{2} \over \partial _{h}x^{2}})_{1,\,j}\ U\ =} .
− 1 12 U 4 , j + 1 3 U 3 , j + 1 2 U 2 , j − 5 3 U 1 , j + 11 12 U 0 , j h 2 {\displaystyle {-{\frac {1}{12}}\,U_{4,\,j}+{\frac {1}{3}}\,U_{3,\,j}+{\frac {1}{2}}\,U_{2,\,j}-{\frac {5}{3}}\,U_{1,\,j}+{\frac {11}{12}}\,U_{0,\,j} \over \ h^{2}}}
( ∂ h 2 ∂ h x 2 ) i , j U = {\displaystyle ({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\ U\ =} .
− 1 12 U i + 2 , j + 4 3 U i + 1 , j − 5 2 U i , j + 4 3 U i − 1 , j − 1 12 U i − 2 , j h 2 {\displaystyle {-{\frac {1}{12}}\,U_{i+2,\,j}+{\frac {4}{3}}\,U_{i+1,\,j}-{\frac {5}{2}}\,U_{i,\,j}+{\frac {4}{3}}\,U_{i-1,\,j}-{\frac {1}{12}}\,U_{i-2,\,j} \over \ h^{2}}}
for i = 2 , 3 , … m − 1 and {\displaystyle {\text{for}}\ i\,=\,2,\ 3,\ \ldots \,m-1\quad {\text{and}}}
( ∂ h 2 ∂ h x 2 ) m , j U = {\displaystyle ({\partial _{h}^{2} \over \partial _{h}x^{2}})_{m,\,j}\ U\ =} .
11 12 U m + 1 , j − 5 3 U m , j + 1 2 U m − 1 , j + 1 3 U m − 2 , j − 1 12 U m − 3 , j h 2 {\displaystyle {{\frac {11}{12}}\,U_{m+1,\,j}-{\frac {5}{3}}\,U_{m,\,j}+{\frac {1}{2}}\,U_{m-1,\,j}+{\frac {1}{3}}\,U_{m-2,\,j}-{\frac {1}{12}}\,U_{m-3,\,j} \over \ h^{2}}}
( ∂ k 2 ∂ k y 2 ) i , 1 U = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,1}\ U\ =} .
− 1 12 U i , 4 + 1 3 U i , 3 + 1 2 U i , 2 − 5 3 U i , 1 + 11 12 U i , 0 k 2 {\displaystyle {-{\frac {1}{12}}\,U_{i,\,4}+{\frac {1}{3}}\,U_{i,\,3}+{\frac {1}{2}}\,U_{i,\,2}-{\frac {5}{3}}\,U_{i,\,1}+{\frac {11}{12}}\,U_{i,\,0} \over \ k^{2}}}
( ∂ k 2 ∂ k y 2 ) i , j U = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\ U\ =} .
− 1 12 U i , j + 2 + 4 3 U i , j + 1 − 5 2 U i , j + 4 3 U i , j − 1 − 1 12 U i , j − 2 k 2 {\displaystyle {-{\frac {1}{12}}\,U_{i,\,j+2}+{\frac {4}{3}}\,U_{i,\,j+1}-{\frac {5}{2}}\,U_{i,\,j}+{\frac {4}{3}}\,U_{i,\,j-1}-{\frac {1}{12}}\,U_{i,\,j-2} \over \ k^{2}}}
for j = 2 , 3 , … n − 1 and {\displaystyle {\text{for}}\ j\,=\,2,\ 3,\ \ldots \,n-1\quad {\text{and}}}
( ∂ k 2 ∂ k y 2 ) i , n U = {\displaystyle ({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,n}\ U\ =} .
11 12 U i , n + 1 − 5 3 U i , n + 1 2 U i , n − 1 + 1 3 U i , n − 2 − 1 12 U i , n − 3 k 2 {\displaystyle {{\frac {11}{12}}\,U_{i,\,n+1}-{\frac {5}{3}}\,U_{i,\,n}+{\frac {1}{2}}\,U_{i,\,n-1}+{\frac {1}{3}}\,U_{i,\,n-2}-{\frac {1}{12}}\,U_{i,\,n-3} \over \ k^{2}}}
为了模拟问题(1.0),令
U 0 , j = g ( x 0 , y j ) , 0 ≤ j ≤ n + 1 U m + 1 , j = g ( x m + 1 , y j ) , 0 ≤ j ≤ n + 1 U i , 0 = g ( x i , y 0 ) , 0 ≤ i ≤ m + 1 U i , n + 1 = g ( x i , y n + 1 ) , 0 ≤ i ≤ m + 1 {\displaystyle {\begin{aligned}U_{0,\,j}\ \ &=&g(x_{0},\ y_{j})\,,&\quad 0\leq j\leq n+1\\U_{m+1,\,j}\ \ &=&g(x_{m+1},\ y_{j})\,,&\quad 0\leq j\leq n+1\\U_{i,\,0}\ \ &=&g(x_{i},\ y_{0})\,,&\quad 0\leq i\leq m+1\\U_{i,\,n+1}\ \ &=&g(x_{i},\ y_{n+1)}\,,&\quad 0\leq i\leq m+1\\\end{aligned}}}
然后求解非奇异线性方程组
− Δ i , j U = f ( x i , y j ) 1 ≤ i ≤ m , 1 ≤ j ≤ n {\displaystyle -\Delta _{i,\,j}\,U=f(x_{i},\,y_{j})\quad 1\leq i\leq m,\ 1\leq j\leq n} ;
对于剩下的 U i , j {\displaystyle U_{i,\,j}}
该误差
U − u = { U i , j − u ( x i , y j ) } {\displaystyle U-u=\{U_{i,\,j}-u(x_{i},\,y_{j})\}} ,
满足
‖ U − u ‖ 2 ≤ ρ a 2 b 2 π 2 ( a 2 + b 2 ) ‖ τ ‖ 2 ( 1 + O ( h 2 + k 2 ) ) {\displaystyle {\lVert U-u\rVert }_{2}\leq {\rho \,a^{2}b^{2} \over \ \pi ^{2}(a^{2}+b^{2})}{\lVert \tau \rVert }_{2}(1+O(h^{2}+k^{2}))} .
对于
τ = { τ ( x i , y j ) } , 1 ≤ i ≤ m , 1 ≤ j ≤ n {\displaystyle \tau =\{\tau (x_{i},\,y_{j})\},\quad 1\leq i\leq m,\ 1\leq j\leq n} ,
以及
ρ ≤ 1 / ( 1 − ( 1 + 1 0 ) / 12 ) {\displaystyle \rho \ \leq \ 1\,/\,(1-(1+{\sqrt {1}}0)\,/\,12)} .
该截断误差对于 ( ∂ h 2 ∂ h x 2 u ( x i , y j ) ) {\displaystyle {\big (}{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{i},\,y_{j}){\big )}} 是在假设 u ( x , y ) {\displaystyle u(x,\;y)} 足够光滑,以至于 ∂ 5 ∂ x 5 u ( x , y ) {\displaystyle {\partial ^{5} \over \partial x^{5}}\,u(x,\;y)} 是连续的。为了符号方便,令
g ( x ) = u ( x , y j ) . {\displaystyle g(x)\;=\;u(x,\;y_{j}).}
将 g ( x ) {\displaystyle g(x)} 在它关于 x i {\displaystyle x_{i}} 的泰勒展开式中展开,
g ( x i + Δ x ) = g ( x i ) + g ( 1 ) ( x i ) Δ x + 1 2 g ( 2 ) ( x i ) ( Δ x ) 2 + 1 6 g ( 3 ) ( x i ) ( Δ x ) 3 + 1 24 g ( 4 ) ( x i ) ( Δ x ) 4 + 1 120 g ( 5 ) ( z ) ( Δ x ) 5 {\displaystyle {\begin{aligned}g(x_{i}+\Delta x)\;&=\;g(x_{i})+g^{(1)}(x_{i})\Delta x+{\frac {1}{2}}\,g^{(2)}(x_{i})({\Delta x})^{2}+{\frac {1}{6}}\,g^{(3)}(x_{i})({\Delta x})^{3}\\&+{\frac {1}{24}}\,g^{(4)}(x_{i})({\Delta x})^{4}+{\frac {1}{120}}\,g^{(5)}(z)({\Delta x})^{5}\\\end{aligned}}} .
其中 z {\displaystyle z} 是 x i {\displaystyle x_{i}} 和 x i + Δ x {\displaystyle x_{i}+\Delta x} 之间的某个数字。那么
∂ h 2 ∂ h x 2 u ( x 1 , y j ) = ( − 1 12 g ( x 1 + 3 h ) + 1 3 g ( x 1 + 2 h ) + 1 2 g ( x 1 + h ) − 5 3 g ( x 1 ) + 11 12 g ( x 1 − h ) ) h 2 {\displaystyle {\begin{aligned}&{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{1},\,y_{j})\;=\\&{{\big (}-{\frac {1}{12}}g(x_{1}+3\,h)+{\frac {1}{3}}g(x_{1}+2\,h)+{\frac {1}{2}}g(x_{1}+h)-{\frac {5}{3}}g(x_{1})+{\frac {11}{12}}g(x_{1}-h){\big )} \over \ h^{2}}\end{aligned}}}
= g ( x 1 ) ( − 1 12 + 1 3 + 1 2 − 5 3 + 11 12 ) h 2 + g ( 1 ) ( x 1 ) ( − 1 12 ( 3 h ) + 1 3 ( 2 h ) + 1 2 ( h ) − 5 3 ( 0 ) + 11 12 ( − h ) ) h 2 + 1 2 g ( 2 ) ( x 1 ) ( − 1 12 ( 3 h ) 2 + 1 3 ( 2 h ) 2 + 1 2 ( h ) 2 − 5 3 ( 0 ) 2 + 11 12 ( − h ) 2 ) h 2 + 1 6 g ( 3 ) ( x 1 ) ( − 1 12 ( 3 h ) 3 + 1 3 ( 2 h ) 3 + 1 2 ( h ) 3 − 5 3 ( 0 ) 3 + 11 12 ( − h ) 3 ) h 2 + 1 24 g ( 4 ) ( x 1 ) ( − 1 12 ( 3 h ) 4 + 1 3 ( 2 h ) 4 + 1 2 ( h ) 4 − 5 3 ( 0 ) 4 + 11 12 ( − h ) 4 ) h 2 + 1 120 ( − 1 12 g ( 5 ) ( z 1 ) ( 3 h ) 5 + 1 3 g ( 5 ) ( z 2 ) ( 2 h ) 5 + 1 2 g ( 5 ) ( z 3 ) ( h ) 5 − 5 3 ( 0 ) 5 h 2 + 11 12 g ( 5 ) ( z 4 ) ( − h ) 5 ) h 2 {\displaystyle {\begin{aligned}&=\;g(x_{1}){(-{\frac {1}{12}}+{\frac {1}{3}}+{\frac {1}{2}}-{\frac {5}{3}}+{\frac {11}{12}}) \over \ h^{2}}\\&+\;g^{(1)}(x_{1}){(-{\frac {1}{12}}(3\,h)+{\frac {1}{3}}(2\,h)+{\frac {1}{2}}(h)-{\frac {5}{3}}(0)+{\frac {11}{12}}(-h)) \over \ h^{2}}\\&+\;{\frac {1}{2}}g^{(2)}(x_{1}){(-{\frac {1}{12}}(3\,h)^{2}+{\frac {1}{3}}(2\,h)^{2}+{\frac {1}{2}}(h)^{2}-{\frac {5}{3}}(0)^{2}+{\frac {11}{12}}(-h)^{2}) \over \ h^{2}}\\&+\;{\frac {1}{6}}g^{(3)}(x_{1}){(-{\frac {1}{12}}(3\,h)^{3}+{\frac {1}{3}}(2\,h)^{3}+{\frac {1}{2}}(h)^{3}-{\frac {5}{3}}(0)^{3}+{\frac {11}{12}}(-h)^{3}) \over \ h^{2}}\\&+\;{\frac {1}{24}}g^{(4)}(x_{1}){(-{\frac {1}{12}}(3\,h)^{4}+{\frac {1}{3}}(2\,h)^{4}+{\frac {1}{2}}(h)^{4}-{\frac {5}{3}}(0)^{4}+{\frac {11}{12}}(-h)^{4}) \over \ h^{2}}\\&+\;{\frac {1}{120}}{(-{\frac {1}{12}}g^{(5)}(z_{1})(3\,h)^{5}+{\frac {1}{3}}g^{(5)}(z_{2})(2\,h)^{5}+{\frac {1}{2}}g^{(5)}(z_{3})(h)^{5}-{\frac {5}{3}}(0)^{5} \over \ h^{2}}\\&\quad \quad \quad \quad {+{\frac {11}{12}}g^{(5)}(z_{4})(-h)^{5}) \over \ h^{2}}\\\end{aligned}}}
= g ( 2 ) ( x 1 ) + h 3 120 ( − 81 4 g ( 5 ) ( z 1 ) + 32 3 g ( 5 ) ( z 2 ) + 1 2 g ( 5 ) ( z 3 ) − 11 12 g ( 5 ) ( z 4 ) ) {\displaystyle =\;g^{(2)}(x_{1})+{h^{3} \over \ 120}{\big (}-{\frac {81}{4}}g^{(5)}(z_{1})+{\frac {32}{3}}g^{(5)}(z_{2})+{\frac {1}{2}}g^{(5)}(z_{3})-{\frac {11}{12}}g^{(5)}(z_{4}){\big )}}
其中
x 1 < z 1 < x 1 + 3 h , x 1 < z 2 < x 1 + 2 h , x 1 < z 3 < x 1 + h , and x 1 − h < z 4 < x 1 . {\displaystyle {\begin{aligned}&x_{1}\;<\;z_{1}\;<\;x_{1}+3\,h\,,\;x_{1}\;<\;z_{2}\;<\;x_{1}+2\,h\,,\;\\&x_{1}\;<\;z_{3}\;<\;x_{1}+h\,,\;\;{\text{and}}\;\;x_{1}-h\;<\;z_{4}\;<\;x_{1}.\\\end{aligned}}} .
由于
67 6 min ( g ( 5 ) ( x 1 + ϕ h ) ) 0 ≤ ϕ ≤ 2 ≤ 32 3 g ( 5 ) ( z 2 ) + 1 2 g ( 5 ) ( z 3 ) ≤ 67 6 max ( g ( 5 ) ( x 1 + ϕ h ) ) 0 ≤ ϕ ≤ 2 , {\displaystyle {\frac {67}{6}}{\underset {0\;\leq \;\phi \;\leq \;2}{\min(g^{(5)}(x_{1}\;+\;\phi \,h))}}\;\leq \;{\frac {32}{3}}g^{(5)}(z_{2})+{\frac {1}{2}}g^{(5)}(z_{3})\;\leq \;{\frac {67}{6}}{\underset {0\;\leq \;\phi \;\leq \;2}{\max(g^{(5)}(x_{1}\;+\;\phi \,h))}},}
254 12 min ( g ( 5 ) ( x 1 + ϕ h ) ) − 1 ≤ ϕ ≤ 3 ≤ 81 4 g ( 5 ) ( z 1 ) + 11 12 g ( 5 ) ( z 4 ) ≤ 254 12 max ( g ( 5 ) ( x 1 + ϕ h ) ) − 1 ≤ ϕ ≤ 3 , {\displaystyle {\frac {254}{12}}{\underset {-1\;\leq \;\phi \;\leq \;3}{\min(g^{(5)}(x_{1}\;+\;\phi \,h))}}\;\leq \;{\frac {81}{4}}g^{(5)}(z_{1})+{\frac {11}{12}}g^{(5)}(z_{4})\;\leq \;{\frac {254}{12}}{\underset {-1\;\leq \;\phi \;\leq \;3}{\max(g^{(5)}(x_{1}\;+\;\phi \,h))}},}
由*中间值定理*可知
32 3 g ( 5 ) ( z 2 ) + 1 2 g ( 5 ) ( z 3 ) = 67 6 g ( 5 ) ( x 1 + ϕ 1 h ) ) , for 0 < ϕ 1 , < 2 , {\displaystyle {\frac {32}{3}}g^{(5)}(z_{2})+{\frac {1}{2}}g^{(5)}(z_{3})\;=\;{\frac {67}{6}}\,g^{(5)}(x_{1}\;+\;\phi _{1}\,h)),\quad {\text{for}}\;0\;<\;\phi _{1}\,,\;<\;2\,,}
81 4 g ( 5 ) ( z 1 ) + 11 12 g ( 5 ) ( z 4 ) = 254 12 g ( 5 ) ( x 1 + ϕ 2 h ) , for − 1 < ϕ 2 < 3 . {\displaystyle {\frac {81}{4}}g^{(5)}(z_{1})+{\frac {11}{12}}g^{(5)}(z_{4})\;=\;{\frac {254}{12}}\,g^{(5)}(x_{1}\;+\;\phi _{2}\,h),\quad {\text{for}}\;-1\;<\;\phi _{2}\;<\;3\,.} .
这给出了
∂ h 2 ∂ h x 2 u ( x 1 , y j ) = g ( 2 ) ( x 1 ) + h 3 120 ( 67 6 g ( 5 ) ( x 1 + ϕ 1 h ) − 254 12 g ( 5 ) ( x 1 + ϕ 2 h ) ) = ∂ 2 ∂ x 2 u ( x 1 , y j ) + h 3 120 ( 67 6 ∂ 5 ∂ x 5 u ( x 1 + ϕ 1 h , y j ) − 254 12 ∂ 5 ∂ x 5 u ( x 1 + ϕ 2 h , y j ) ) {\displaystyle {\begin{aligned}&{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{1},\,y_{j})\;=\;g^{(2)}(x_{1})+{h^{3} \over \ 120}{\big (}{\frac {67}{6}}\,g^{(5)}(x_{1}+\phi _{1}\,h)-{\frac {254}{12}}\,g^{(5)}(x_{1}+\phi _{2}\,h){\big )}\\&\;=\;{\partial ^{2} \over \partial x^{2}}\,u(x_{1},\,y_{j})+{h^{3} \over \ 120}{\big (}{\frac {67}{6}}{\partial ^{5} \over \partial x^{5}}u(x_{1}+\phi _{1}\,h,\;y_{j})-{\frac {254}{12}}{\partial ^{5} \over \partial x^{5}}u(x_{1}+\phi _{2}\,h,\;y_{j}){\big )}\\\end{aligned}}}
这指的是
τ x ( x 1 , y j ) = h 3 120 M x 5 ( x 1 , y j ) . {\displaystyle \tau _{x}(x_{1},\,y_{j})\;=\;{h^{3} \over \ 120}M_{x}^{5}(x_{1},\,y_{j}).}
当 i = 2 , 3 , … , m − 1 {\displaystyle i\;=\;2,\;3,\;\ldots \,,\;m-1}
∂ h 2 ∂ h x 2 u ( x i , y j ) = ( − 1 12 g ( x i + 2 h ) + 4 3 g ( x i + h ) − 5 2 g ( x i ) + 4 3 g ( x i − h ) − 1 12 g ( x i − 2 h ) ) h 2 {\displaystyle {\begin{aligned}&{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{i},\,y_{j})\;=\\&{{\big (}-{\frac {1}{12}}g(x_{i}+2\,h)+{\frac {4}{3}}g(x_{i}+h)-{\frac {5}{2}}g(x_{i})+{\frac {4}{3}}g(x_{i}-h)-{\frac {1}{12}}g(x_{i}-2\,h){\big )} \over \ h^{2}}\end{aligned}}}
= g ( x i ) ( − 1 12 + 4 3 − 5 2 + 4 3 − 1 12 ) h 2 + g ( 1 ) ( x i ) ( − 1 12 ( 2 h ) + 4 3 ( h ) − 5 2 ( 0 ) + 4 3 ( − h ) − 1 12 ( − 2 h ) ) h 2 <
= g ( 2 ) ( x i ) + h 3 120 ( − 8 3 g ( 5 ) ( z 1 ) + 4 3 g ( 5 ) ( z 2 ) − 4 3 g ( 5 ) ( z 3 ) + 8 3 g ( 5 ) ( z 4 ) ) {\displaystyle =\;g^{(2)}(x_{i})+{h^{3} \over \ 120}{\big (}-{\frac {8}{3}}g^{(5)}(z_{1})+{\frac {4}{3}}g^{(5)}(z_{2})-{\frac {4}{3}}g^{(5)}(z_{3})+{\frac {8}{3}}g^{(5)}(z_{4}){\big )}}
其中
x i < z 1 < x i + 2 h , x i < z 2 < x i + h , x i − h < z 3 < x i , and x i − 2 h < z 4 < x i . {\displaystyle {\begin{aligned}&x_{i}\;<\;z_{1}\;<\;x_{i}+2\,h\,,\;x_{i}\;<\;z_{2}\;<\;x_{i}+h\,,\;\\&x_{i}-h\;<\;z_{3}\;<\;x_{i}\,,\;\;{\text{and}}\;\;x_{i}-2\,h\;<\;z_{4}\;<\;x_{i}.\\\end{aligned}}} .
如同之前推导,将同号项合并,并使用中值定理,
4 3 g ( 5 ) ( z 2 ) + 8 3 g ( 5 ) ( z 4 ) = 4 g ( 5 ) ( x i + ϕ 1 h ) ) , for − 2 < ϕ 1 , < 1 , {\displaystyle {\frac {4}{3}}g^{(5)}(z_{2})+{\frac {8}{3}}g^{(5)}(z_{4})\;=\;4\,g^{(5)}(x_{i}\;+\;\phi _{1}\,h)),\quad {\text{for}}\;-2\;<\;\phi _{1}\,,\;<\;1\,,}
8 3 g ( 5 ) ( z 1 ) + 4 3 g ( 5 ) ( z 3 ) = 4 g ( 5 ) ( x i + ϕ 2 h ) , for − 1 < ϕ 2 < 2 . {\displaystyle {\frac {8}{3}}g^{(5)}(z_{1})+{\frac {4}{3}}g^{(5)}(z_{3})\;=\;4\,g^{(5)}(x_{i}\;+\;\phi _{2}\,h),\quad {\text{for}}\;-1\;<\;\phi _{2}\;<\;2\,.} .
这给出了
∂ h 2 ∂ h x 2 u ( x i , y j ) = g ( 2 ) ( x i ) + h 3 120 ( 67 6 g ( 5 ) ( x i + ϕ 1 h ) − 254 12 g ( 5 ) ( x i + ϕ 2 h ) ) = ∂ 2 ∂ x 2 u ( x i , y j ) + h 3 120 ( 4 ∂ 5 ∂ x 5 u ( x i + ϕ 1 h , y j ) − 4 ∂ 5 ∂ x 5 u ( x i + ϕ 2 h , y j ) ) {\displaystyle {\begin{aligned}&{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{i},\,y_{j})\;=\;g^{(2)}(x_{i})+{h^{3} \over \ 120}{\big (}{\frac {67}{6}}\,g^{(5)}(x_{i}+\phi _{1}\,h)-{\frac {254}{12}}\,g^{(5)}(x_{i}+\phi _{2}\,h){\big )}\\&\;=\;{\partial ^{2} \over \partial x^{2}}\,u(x_{i},\,y_{j})+{h^{3} \over \ 120}{\big (}4{\partial ^{5} \over \partial x^{5}}u(x_{i}+\phi _{1}\,h,\;y_{j})-4{\partial ^{5} \over \partial x^{5}}u(x_{i}+\phi _{2}\,h,\;y_{j}){\big )}\\\end{aligned}}}
这指的是
τ x ( x i , y j ) = h 3 120 M x 5 ( x i , y j ) . {\displaystyle \tau _{x}(x_{i},\,y_{j})\;=\;{h^{3} \over \ 120}M_{x}^{5}(x_{i},\,y_{j}).}
假设 ∂ 6 ∂ x 6 u ( x , y ) {\displaystyle {\partial ^{6} \over \partial x^{6}}\,u(x,\;y)} 是连续的,在上述论证中,表达式
+ 1 120 ( − 1 12 g ( 5 ) ( z 1 ) ( 2 h ) 5 + 4 3 g ( 5 ) ( z 2 ) ( h ) 5 − 5 2 ( 0 ) 5 + 4 3 g ( 5 ) ( z 3 ) ( − h ) 5 h 2 − 1 12 g ( 5 ) ( z 4 ) ( − 2 h ) 5 ) h 2 {\displaystyle {\begin{aligned}&+\;{\frac {1}{120}}{(-{\frac {1}{12}}g^{(5)}(z_{1})(2\,h)^{5}+{\frac {4}{3}}g^{(5)}(z_{2})(h)^{5}-{\frac {5}{2}}(0)^{5}+{\frac {4}{3}}g^{(5)}(z_{3})(-h)^{5} \over \ h^{2}}\\&\quad \quad \quad \quad {-{\frac {1}{12}}g^{(5)}(z_{4})(-2\,h)^{5}) \over \ h^{2}}\\\end{aligned}}}
可以替换为
+ 1 120 g ( 5 ) ( x i ) ( − 1 12 ( 2 h ) 5 + 4 3 ( h ) 5 − 5 2 ( 0 ) 5 + 4 3 ( − h ) 5 h 2 − 1 12 ( − 2 h ) 5 ) h 2 + 1 720 ( − 1 12 g ( 6 ) ( z 1 ) ( 2 h ) 6 + 4 3 g ( 6 ) ( z 2 ) ( h ) 6 − 5 2 ( 0 ) 5 + 4 3 g ( 6 ) ( z 3 ) ( − h ) 6 h 2 − 1 12 g ( 6 ) ( z 4 ) ( − 2 h ) 6 ) h 2 {\displaystyle {\begin{aligned}&+\;{\frac {1}{120}}g^{(5)}(x_{i}){(-{\frac {1}{12}}(2\,h)^{5}+{\frac {4}{3}}(h)^{5}-{\frac {5}{2}}(0)^{5}+{\frac {4}{3}}(-h)^{5} \over \ h^{2}}\\&\quad \quad \quad \quad {-{\frac {1}{12}}(-2\,h)^{5}) \over \ h^{2}}\\&\;\\&+\;
这给出了
∂ h 2 ∂ h x 2 u ( x i , y j ) = = ∂ 2 ∂ x 2 u ( x i , y j ) + h 4 720 ( 8 3 ∂ 6 ∂ x 6 u ( x i + ϕ 1 h , y j ) − 32 3 ∂ 6 ∂ x 6 u ( x i + ϕ 2 h , y j ) ) {\displaystyle {\begin{aligned}&{\partial _{h}^{2} \over \partial _{h}x^{2}}\,u(x_{i},\,y_{j})\;=\;\\&\;=\;{\partial ^{2} \over \partial x^{2}}\,u(x_{i},\,y_{j})+{h^{4} \over \ 720}{\big (}{\frac {8}{3}}{\partial ^{6} \over \partial x^{6}}u(x_{i}+\phi _{1}\,h,\;y_{j})-{\frac {32}{3}}{\partial ^{6} \over \partial x^{6}}u(x_{i}+\phi _{2}\,h,\;y_{j}){\big )}\\\end{aligned}}}
当 − 1 < ϕ 1 < 1 , − 2 < ϕ 2 < 2 {\displaystyle -1\;<\;\phi _{1}\;<\;1\,,\quad -2\;<\;\phi _{2}\;<\;2} 时,
τ x ( x i , y j ) = h 4 720 M x 6 ( x i , y j ) . {\displaystyle \tau _{x}(x_{i},\,y_{j})\;=\;{h^{4} \over \ 720}M_{x}^{6}(x_{i},\,y_{j}).}
其他 截断误差 估计也是以相同的方式完成。
设 误差
e = { e i , j } , 1 ≤ i ≤ m , 1 ≤ j ≤ n , {\displaystyle e=\{e_{i,\,j}\},\quad 1\leq i\leq m,\ 1\leq j\leq n,}
定义为
e i , j = U i , j − u ( x i , y j ) {\displaystyle e_{i,\,j}=U_{i,\,j}-u(x_{i},y_{j})} .
U {\displaystyle U} 是 有限差分格式 (xx) 的解,而 u ( x i , y j ) {\displaystyle u(x_{i},\,y_{j})} 是 (1.0) 的解。
由于
− Δ i , j e = − Δ i , j U + Δ h , k u ( x i , y j ) = f ( x i , y j ) + ( Δ u ( x i , y j ) + τ ( x i , y j ) ) = τ ( x i , y j ) {\displaystyle {\begin{aligned}-\Delta _{i,\,j}\,e&=-\Delta _{i,\,j}\,U+\Delta _{h,\,k}\,u(x_{i},\,y_{j})\\&=f(x_{i},\,y_{j})+(\Delta \,u(x_{i},\,y_{j})+\tau (x_{i},\,y_{j}))\\&=\tau (x_{i},\,y_{j})\\\end{aligned}}}
我们得到
∑ i = 1 m ∑ j = 1 n e i , j ( − Δ i , j e ) = ∑ i = 1 m ∑ j = 1 n e i , j τ ( x i , y j ) ≤ ‖ e ‖ 2 ‖ τ ‖ 2 {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\Delta _{i,\,j}\,e)\ =\ \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,\tau (x_{i},\,y_{j})\ \leq \ {\lVert e\rVert }_{2}\,{\lVert \tau \rVert }_{2}} .
接下来将证明算子 − Δ i , j {\displaystyle -\Delta _{i,\,j}} 对 e {\displaystyle e} , 特别是
∑ i = 1 m ∑ j = 1 n e i , j ( − Δ i , j e ) {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\Delta _{i,\,j}\,e)}
≥ λ ( 4 a − 2 ( m + 1 ) 2 ( s o m e t h i n g ) + 4 b − 2 ( n + 1 ) 2 ( ) ) ‖ e ‖ 2 {\displaystyle \geq \;\lambda (4a^{-2}\,{(m+1)}^{2}\,(something)+4b^{-2}\,{(n+1)}^{2}\,())\,{\lVert e\rVert }_{2}} ,
其中
λ ≥ 1 − ( 1 + 1 0 ) / 12 {\displaystyle \lambda \ \geq \ 1-(1+{\sqrt {1}}0)\,/\,12} 。
从 ∑ i = 1 m ∑ j = 1 n e i , j ( − Δ i , j e ) = {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\Delta _{i,\,j}\,e)\;=}
∑ i = 1 m ∑ j = 1 n e i , j ( − ( ∂ h 2 ∂ h x 2 ) i , j e − ( ∂ k 2 ∂ k y 2 ) i , j e ) = {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e-({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,e)\;=}
∑ j = 1 n ∑ i = 1 m e i , j ( − ( ∂ h 2 ∂ h x 2 ) i , j e ) + ∑ i = 1 m ∑ j = 1 n e i , j ( − ( ∂ k 2 ∂ k y 2 ) i , j e ) {\displaystyle \sum _{j=1}^{n}\sum _{i=1}^{m}e_{i,\,j}\,(-({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)\;+\;\sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,e)}
首先估计和 ∑ i = 1 m e i , j ( − ( ∂ h 2 ∂ h x 2 ) i , j e ) {\displaystyle \sum _{i=1}^{m}e_{i,\,j}\,(-({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)} 。
− h 2 ( ∂ h 2 ∂ h x 2 ) 1 , j e = {\displaystyle -h^{2}({\partial _{h}^{2} \over \partial _{h}x^{2}})_{1,\,j}\ e\ =} .
1 12 e 4 , j − 1 3 e 3 , j − 1 2 e 2 , j + 5 3 e 1 , j − 11 12 e 0 , j {\displaystyle {\frac {1}{12}}\,e_{4,\,j}-{\frac {1}{3}}\,e_{3,\,j}-{\frac {1}{2}}\,e_{2,\,j}+{\frac {5}{3}}\,e_{1,\,j}-{\frac {11}{12}}\,e_{0,\,j}}
= 7 6 ( − 1 1 e 2 , j + 2 1 e 1 , j − 1 1 e 0 , j ) {\displaystyle ={\frac {7}{6}}(-{\frac {1}{1}}\,e_{2,\,j}+{\frac {2}{1}}\,e_{1,\,j}-{\frac {1}{1}}\,e_{0,\,j})}
+ ( 1 12 ( e 4 , j − e 3 , j ) − 1 4 ( e 3 , j − e 2 , j ) + 5 12 ( e 2 , j − e 1 , j ) − 1 4 ( e 1 , j − e 0 , j ) ) {\displaystyle {\begin{aligned}+\;&({\frac {1}{12}}\,(e_{4,\,j}-e_{3,\,j})-{\frac {1}{4}}\,(e_{3,\,j}-e_{2,\,j})+{\frac {5}{12}}\,(e_{2,\,j}-e_{1,\,j})-{\frac {1}{4}}\,(e_{1,\,j}-e_{0,\,j}))\\\end{aligned}}}
= ( 1 12 e 3 , j − 5 4 e 2 , j + 5 4 e 1 , j − 1 12 e 0 , j ) − ( − 1 12 e 4 , j + 5 12 e 3 , j − 3 4 e 2 , j − 5 12 e 1 , j + 5 6 e 0 , j ) {\displaystyle {\begin{aligned}=\;&({\frac {1}{12}}\,e_{3,\,j}-{\frac {5}{4}}\,e_{2,\,j}+{\frac {5}{4}}\,e_{1,\,j}-{\frac {1}{12}}\,e_{0,\,j})\\-\;&(-{\frac {1}{12}}\,e_{4,\,j}+{\frac {5}{12}}\,e_{3,\,j}-{\frac {3}{4}}\,e_{2,\,j}-{\frac {5}{12}}\,e_{1,\,j}+{\frac {5}{6}}\,e_{0,\,j})\\\end{aligned}}}
− h 2 ( ∂ h 2 ∂ h x 2 .
1 12 e i + 2 , j − 4 3 e i + 1 , j + 5 2 e i , j − 4 3 e i − 1 , j + 1 12 e i − 2 , j {\displaystyle {\frac {1}{12}}\,e_{i+2,\,j}-{\frac {4}{3}}\,e_{i+1,\,j}+{\frac {5}{2}}\,e_{i,\,j}-{\frac {4}{3}}\,e_{i-1,\,j}+{\frac {1}{12}}\,e_{i-2,\,j}}
= 7 6 ( − 1 1 e i + 1 , j + 2 1 e i , j − 1 1 e i − 1 , j ) {\displaystyle ={\frac {7}{6}}\,(-{\frac {1}{1}}\,e_{i+1,\,j}+{\frac {2}{1}}\,e_{i,\,j}-{\frac {1}{1}}\,e_{i-1,\,j})}
+ 1 12 ( e i + 2 , j − e i + 1 , j ) − 1 12 ( e i + 1 , j − e i , j ) {\displaystyle +{\frac {1}{12}}\,(e_{i+2,\,j}-e_{i+1,\,j})-{\frac {1}{12}}\,(e_{i+1,\,j}-e_{i,\,j})}
+ 1 12 ( e i , j − e i − 1 , j ) − 1 12 ( e i − 1 , j − e i − 2 , j ) {\displaystyle +{\frac {1}{12}}\,(e_{i,\,j}-e_{i-1,\,j})-{\frac {1}{12}}\,(e_{i-1,\,j}-e_{i-2,\,j})}
= ( 1 12 e i + 2 , j − 5 4 e i + 1 , j + 5 4 e i , j − 1 12 e i − 1 , j ) − ( 1 12 e i + 1 , j − 5 4 e i , j + 5 4 e i − 1 , j − 1 12 e i − 2 , j ) {\displaystyle {\begin{aligned}=\;&({\frac {1}{12}}\,e_{i+2,\,j}&-{\frac {5}{4}}\,e_{i+1,\,j}&+{\frac {5}{4}}\,e_{i,\,j}&-{\frac {1}{12}}\,e_{i-1,\,j})\\-\;&({\frac {1}{12}}\,e_{i+1,\,j}&-{\frac {5}{4}}\,e_{i,\,j}\quad &+{\frac {5}{4}}\,e_{i-1,\,j}&-{\frac {1}{12}}\,e_{i-2,\,j})\\\end{aligned}}} for i = 2 , 3 , … m − 1 and {\displaystyle {\text{for}}\ i\,=\,2,\ 3,\ \ldots \,m-1\quad {\text{and}}}
− h 2 ( ∂ h 2 ∂ h x 2 ) m , j e = {\displaystyle -h^{2}({\partial _{h}^{2} \over \partial _{h}x^{2}})_{m,\,j}\ e\ =} .
− 11 12 e m + 1 , j + 5 3 e m , j − 1 2 e m − 1 , j − 1 3 e m − 2 , j + 1 12 e m − 3 , j {\displaystyle -{\frac {11}{12}}\,e_{m+1,\,j}+{\frac {5}{3}}\,e_{m,\,j}-{\frac {1}{2}}\,e_{m-1,\,j}-{\frac {1}{3}}\,e_{m-2,\,j}+{\frac {1}{12}}\,e_{m-3,\,j}}
= ( − 5 6 e m + 1 , j + 5 12 e m , j + 3 4 e m − 1 , j + 1 4 e m − 2 , j + 1 12 e m − 3 , j ) − ( 1 12 e m + 1 , j − 5 4 e m , j + 5 4 e m − 1 , j − 1 12 e m − 2 , j ) {\displaystyle {\begin{aligned}=\;&(-{\frac {5}{6}}\,e_{m+1,\,j}+{\frac {5}{12}}\,e_{m,\,j}+{\frac {3}{4}}\,e_{m-1,\,j}+{\frac {1}{4}}\,e_{m-2,\,j}+{\frac {1}{12}}\,e_{m-3,\,j})\\-\;&({\frac {1}{12}}\,e_{m+1,\,j}-{\frac {5}{4}}\,e_{m,\,j}+{\frac {5}{4}}\,e_{m-1,\,j}-{\frac {1}{12}}\,e_{m-2,\,j})\\\end{aligned}}}
= 7 6 ( − 1 1 e m + 1 , j + 2 1 e m , j − 1 1 e m − 1 , j ) {\displaystyle ={\frac {7}{6}}(-{\frac {1}{1}}\,e_{m+1,\,j}+{\frac {2}{1}}\,e_{m,\,j}-{\frac {1}{1}}\,e_{m-1,\,j})}
+ ( − 1 12 ( e m − 2 , j − e m − 3 , j ) + 1 4 ( e m − 1 , j − e m − 2 , j ) − 5 12 ( e m , j − e m − 1 , j ) + 1 4 ( e m + 1 , j − e m , j ) ) {\displaystyle {\begin{aligned}+\;&(-{\frac {1}{12}}\,(e_{m-2,\,j}-e_{m-3,\,j})+{\frac {1}{4}}\,(e_{m-1,\,j}-e_{m-2,\,j})-{\frac {5}{12}}\,(e_{m,\,j}-e_{m-1,\,j})+{\frac {1}{4}}\,(e_{m+1,\,j}-e_{m,\,j}))\\\end{aligned}}}
现在,为了使用, 分部求和公式 被陈述如下。
∑ i = 1 m w i ( v i − v i − 1 ) = w m v m − w 0 v 0 − ∑ i = 0 m − 1 v i ( w i + 1 − w i ) {\displaystyle \sum _{i=1}^{m}w_{i}\,(v_{i}-v_{i-1})=w_{m}\,v_{m}-w_{0}\,v_{0}-\sum _{i=0}^{m-1}v_{i}\,(w_{i+1}-w_{i})}
N o w , − h 2 ( ∂ h 2 ∂ h x 2 ) i , j e = v i , j − v i − 1 , j , with {\displaystyle Now,\quad -h^{2}({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\ e\ =v_{i,\,j}-v_{i-1,\,j},\quad {\text{with}}}
v 0 , j = ( − 1 12 e 4 , j + 5 12 e 3 , j − 3 4 e 2 , j − 5 12 e 1 , j + 5 6 e 0 , j ) {\displaystyle v_{0,\,j}\;=\;(-{\frac {1}{12}}\,e_{4,\,j}+{\frac {5}{12}}\,e_{3,\,j}-{\frac {3}{4}}\,e_{2,\,j}-{\frac {5}{12}}\,e_{1,\,j}+{\frac {5}{6}}\,e_{0,\,j})}
= − 1 12 ( e 4 , j − e 3 , j ) + 1 3 ( e 3 , j − e 2 , j ) − 5 12 ( e 2 , j − e 1 , j ) − 5 6 ( e 1 , j − e 0 , j ) {\displaystyle =\;-{\frac {1}{12}}\,(e_{4,\,j}-e_{3,\,j})+{\frac {1}{3}}\,(e_{3,\,j}-e_{2,\,j})-{\frac {5}{12}}\,(e_{2,\,j}-e_{1,\,j})-{\frac {5}{6}}\,(e_{1,\,j}-e_{0,\,j})}
v i , j = ( 1 12 e i + 2 , j − 5 4 e i + 1 , j + 5 4 e i , j − 1 12 e i − 1 , j ) = 1 12 ( e i + 2 , j − e i + 1 , j ) − 7 6 ( e i + 1 , j − e i , j ) + 1 12 ( e i , j − e i − 1 , j ) {\displaystyle {\begin{aligned}v_{i,\,j}\;&=\;({\frac {1}{12}}\,e_{i+2,\,j}-{\frac {5}{4}}\,e_{i+1,\,j}+{\frac {5}{4}}\,e_{i,\,j}-{\frac {1}{12}}\,e_{i-1,\,j})\\\;&=\;{\frac {1}{12}}\,(e_{i+2,\,j}-e_{i+1,\,j})-{\frac {7}{6}}\,(e_{i+1,\,j}-e_{i,\,j})+{\frac {1}{12}}\,(e_{i,\,j}-e_{i-1,\,j})\\\end{aligned}}}
for i = 1 , 2 , … m − 1 and {\displaystyle {\text{for}}\ i\,=\,1,\ 2,\ \ldots \,m-1\quad {\text{and}}} .
v m , j = ( − 5 6 e m + 1 , j + 5 12 e m , j + = − 5 6 ( e m + 1 , j − e m , j ) − 5 12 ( e m , j − e m − 1 , j ) + 1 3 ( e m − 1 , j − e m − 2 , j ) − 1 12 ( e m − 2 , j − e m − 3 , j ) {\displaystyle =\;-{\frac {5}{6}}\,(e_{m+1,\,j}-e_{m,\,j})-{\frac {5}{12}}\,(e_{m,\,j}-e_{m-1,\,j})+{\frac {1}{3}}\,(e_{m-1,\,j}-e_{m-2,\,j})-{\frac {1}{12}}\,(e_{m-2,\,j}-e_{m-3,\,j})}
所以这个和 ∑ i = 1 m e i , j ( − h 2 ( ∂ h 2 ∂ h x 2 ) i , j e ) = ∑ i = 1 m e i , j ( v i , j − v i − 1 , j ) {\displaystyle {\text{So the sum}}\;\sum _{i=1}^{m}e_{i,\,j}\,(-h^{2}({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)=\;\sum _{i=1}^{m}e_{i,\,j}\,(v_{i,\,j}-v_{i-1,\,j})} = e m , j v m , j − e 0 , j v 0 , j − ∑ i = 0 m − 1 v i , j ( e i + 1 , j − e i , j ) {\displaystyle =e_{m,\,j}\,v_{m,\,j}-e_{0,\,j}\,v_{0,\,j}-\sum _{i=0}^{m-1}v_{i,\,j}\,(e_{i+1,\,j}-e_{i,\,j})}
考虑到 e m + 1 , j = e 0 , j = 0 {\displaystyle e_{m+1,\,j}\,=\,e_{0,\,j}\,=\,0} 得出以下结论
∑ i = 1 m e
= − v 0 , j ( e 1 , j − e 0 , j ) − ∑ i = 1 m − 1 v i , j ( e i + 1 , j − e i , j ) − v m , j ( e m + 1 , j − e m , j ) {\displaystyle =\;-v_{0,\,j}\,(e_{1,\,j}-e_{0,\,j})-\sum _{i=1}^{m-1}v_{i,\,j}\,(e_{i+1,\,j}-e_{i,\,j})-v_{m,\,j}\,(e_{m+1,\,j}-e_{m,\,j})}
= 1 12 ( e 4 , j − e 3 , j ) ( e 1 , j − e 0 , j ) − 1 3 ( e 3 , j − e 2 , j ) ( e 1 , j − e 0 , j ) + 5 12 ( e 2 , j − e 1 , j ) ( e 1 , j − e 0 , j ) + 5 6 ( e 1 , j − e 0 , j ) 2 − 1 12 ∑ i = 1 m − 1 ( e i + 2 , j − e i + 1 , j ) ( e i + 1 , j − e i , j ) + 7 6 ∑ i = 1 m − 1 ( e i + 1 , j − e i , j ) 2 − 1 12 ∑ i = 1 m − 1 ( e i , j − e i − 1 , j ) ( e i + 1 , j − e i , j ) + 5 6 ( e m + 1 , j − e m , j ) 2 + 5 12 ( e m , j − e m − 1 , j ) ( e m + 1 , j − e m , j ) − 1 3 ( e m − 1 , j − e m − 2 , j ) ( e m + 1 , j − e m , j ) + 1 12 ( e m − 2 , j − e m − 3 , j ) ( e m + 1 , j − e m , j ) {\displaystyle {\begin{aligned}=\;&{\frac {1}{12}}\,(e_{4,\,j}-e_{3,\,j})\,(e_{1,\,j}-e_{0,\,j})-{\frac {1}{3}}\,(e_{3,\,j}-e_{2,\,j})\,(e_{1,\,j}-e_{0,\,j})\\&+{\frac {5}{12}}\,(e_{2,\,j}-e_{1,\,j})\,(e_{1,\,j}-e_{0,\,j})+{\frac {5}{6}}\,(e_{1,\,j}-e_{0,\,j})^{2}\\\;&-{\frac {1}{12}}\sum _{i=1}^{m-1}(e_{i+2,\,j}-e_{i+1,\,j})(e_{i+1,\,j}-e_{i,\,j})+{\frac {7}{6}}\sum _{i=1}^{m-1}(e_{i+1,\,j}-e_{i,\,j})^{2}\\\;&-{\frac {1}{12}}\sum _{i=1}^{m-1}(e_{i,\,j}-e_{i-1,\,j})(e_{i+1,\,j}-e_{i,\,j})+{\frac {5}{6}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}\\\;&+{\frac {5}{12}}\,(e_{m,\,j}-e_{m-1,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\;-{\frac {1}{3}}\,(e_{m-1,\,j}-e_{m-2,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\;&+{\frac {1}{12}}\,(e_{m-2,\,j}-e_{m-3,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\end{aligned}}}
将上述表达式中的同类项合并如下。
5 6 ( e 1 , j − e 0 , j ) 2 + 7 6 ∑ i = 1 m − 1 ( e i + 1 , j − e i , j ) 2 + 5 6 ( e m + 1 , j − e m , j ) 2 {\displaystyle {\frac {5}{6}}\,(e_{1,\,j}-e_{0,\,j})^{2}+{\frac {7}{6}}\sum _{i=1}^{m-1}(e_{i+1,\,j}-e_{i,\,j})^{2}+{\frac {5}{6}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}}
= 7 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − 1 3 ( e 1 , j − e 0 , j ) 2 − 1 3 ( e m + 1 , j − e m , j ) 2 {\displaystyle =\,{\frac {7}{6}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}-{\frac {1}{3}}\,(e_{1,\,j}-e_{0,\,j})^{2}-{\frac {1}{3}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}}
− 1 12 ∑ i = 1 m − 1 ( e i + 2 , j − e i + 1 , j ) ( e i + 1 , j − e i , j ) − 1 12 ∑ i = 1 m − 1 ( e i , j − e i − 1 , j ) ( e i + 1 , j − e i , j ) {\displaystyle -{\frac {1}{12}}\sum _{i=1}^{m-1}(e_{i+2,\,j}-e_{i+1,\,j})(e_{i+1,\,j}-e_{i,\,j})-{\frac {1}{12}}\sum _{i=1}^{m-1}(e_{i,\,j}-e_{i-1,\,j})(e_{i+1,\,j}-e_{i,\,j})}
= − 1 6 ∑ i = 2 m − 1 ( e i + 1 , j − e i , j ) ( e i , j − e i − 1 , j ) − 1 12 ( e 2 , j − e 1 , j ) ( e 1 , j − e 0 , j ) − 1 12 ( e m + 1 , j − e m , j ) ( e m , j − e m − 1 , j ) {\displaystyle {\begin{aligned}=\,&-{\frac {1}{6}}\sum _{i=2}^{m-1}(e_{i+1,\,j}-e_{i,\,j})(e_{i,\,j}-e_{i-1,\,j})-{\frac {1}{12}}(e_{2,\,j}-e_{1,\,j})(e_{1,\,j}-e_{0,\,j})\\\,&-{\frac {1}{12}}(e_{m+1,\,j}-e_{m,\,j})(e_{m,\,j}-e_{m-1,\,j})\\\end{aligned}}}
现在,在进行抵消后重新编写表达式。
7 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − 1 6 ∑ i = 2 m − 1 ( e i + 1 , j − e i , j ) ( e i , j − e i − 1 , j ) − 1 3 ( e 1 , j − e 0 , j ) 2 − 1 3 ( e m + 1 , j − e m , j ) 2 + 1 12 ( e 4 , j − e 3 , j ) ( e 1 , j − e 0 , j ) − 1 3 ( e 3 , j − e 2 , j ) ( e 1 , j − e 0 , j ) + 1 3 ( e 2 , j − e 1 , j ) ( e 1 , j − e 0 , j ) + 1 3 ( e m , j − e m − 1 , j ) ( e m + 1 , j − e m , j ) − 1 3 ( e m − 1 , j − e m − 2 , j ) ( e m + 1 , j − e m , j ) + 1 12 ( e m − 2 , j − e m − 3 , j ) ( e m + 1 , j − e m , j ) {\displaystyle {\begin{aligned}&{\frac {7}{6}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}-{\frac {1}{6}}\sum _{i=2}^{m-1}(e_{i+1,\,j}-e_{i,\,j})(e_{i,\,j}-e_{i-1,\,j})-{\frac {1}{3}}\,(e_{1,\,j}-e_{0,\,j})^{2}\\&-{\frac {1}{3}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}+{\frac {1}{12}}\,(e_{4,\,j}-e_{3,\,j})\,(e_{1,\,j}-e_{0,\,j})\\&-{\frac {1}{3}}\,(e_{3,\,j}-e_{2,\,j})\,(e_{1,\,j}-e_{0,\,j})+{\frac {1}{3}}\,(e_{2,\,j}-e_{1,\,j})\,(e_{1,\,j}-e_{0,\,j})\\&+{\frac {1}{3}}\,(e_{m,\,j}-e_{m-1,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\;-{\frac {1}{3}}\,(e_{m-1,\,j}-e_{m-2,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\;&+{\frac {1}{12}}\,(e_{m-2,\,j}-e_{m-3,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\end{aligned}}}
我们将使用以下简单不等式来对项进行边界处理。
( a − b ) 2 = a 2 − 2 a b + b 2 ≥ 0 2 a b ≤ a 2 + b 2 a b ≤ 1 2 ( a 2 + b 2 ) {\displaystyle {\begin{aligned}(a-b)^{2}&=a^{2}-2\,a\,b+b^{2}\,\geq \,0\\2\,a\,b\,&\leq \,a^{2}+b^{2}\\a\,b\,&\leq \,{\frac {1}{2}}\,(a^{2}+b^{2})\\\end{aligned}}}
以及
a b ≤ 1 2 ( α 2 a 2 + b 2 / α 2 ) {\displaystyle a\,b\,\leq \,{\frac {1}{2}}\,(\alpha ^{2}\,a^{2}+b^{2}\,/\,\alpha ^{2})} .
= ∑ i = 3 m − 3 ( e i + 1 , j − e i , j ) 2 + 1 2 ( e 3 , j − e 2 , j ) 2 + 1 2 ( e m − 1 , j − e m − 2 , j ) 2 + | ( e 3 , j − e 2 , j ) ( e 2 , j − e 1 , j ) | + | ( e m , j − e m − 1 , j ) ( e m − 1 , j − e m − 2 , j ) | {\displaystyle {\begin{aligned}&=\;\sum _{i=3}^{m-3}(e_{i+1,\,j}-e_{i,\,j})^{2}\;+\;{\frac {1}{2}}\,(e_{3,\,j}-e_{2,\,j})^{2}\;+\;{\frac {1}{2}}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}\\&+\;\left\vert (e_{3,\,j}-e_{2,\,j})(e_{2,\,j}-e_{1,\,j})\right\vert \;+\;\left\vert (e_{m,\,j}-e_{m-1,\,j})(e_{m-1,\,j}-e_{m-2,\,j})\right\vert \\\end{aligned}}}
= ∑ i = 2 m − 2 ( e i + 1 , j − e i , j ) 2 − 1 2 ( e 3 , j − e 2 , j ) 2 − 1 2 ( e m − 1 , j − e m − 2 , j ) 2 + | ( e 3 , j − e 2 , j ) ( e 2 , j − e 1 , j ) | + | ( e m , j − e m − 1 , j ) ( e m − 1 , j − e m − 2 , j ) | {\displaystyle {\begin{aligned}&=\;\sum _{i=2}^{m-2}(e_{i+1,\,j}-e_{i,\,j})^{2}\;-\;{\frac {1}{2}}\,(e_{3,\,j}-e_{2,\,j})^{2}\;-\;{\frac {1}{2}}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}\\&+\;\left\vert (e_{3,\,j}-e_{2,\,j})(e_{2,\,j}-e_{1,\,j})\right\vert \;+\;\left\vert (e_{m,\,j}-e_{m-1,\,j})(e_{m-1,\,j}-e_{m-2,\,j})\right\vert \\\end{aligned}}}
≤ ∑ i = 2 m − 2 ( e i + 1 , j
| ( e 4 , j − e 3 , j ) ( e 1 , j − e 0 , j ) | ≤ 1 2 ( α 2 2 ( e 4 , j − e 3 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 2 2 ) | ( e 3 , j − e 2 , j ) ( e 1 , j − e 0 , j ) | ≤ 1 2 ( α 3 2 ( e 3 , j − e 2 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 3 2 ) | ( e 2 , j − e 1 , j ) ( e 1 , j − e 0 , j ) | ≤ 1 2 ( α 4 2 ( e 2 , j − e 1 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 4 2 ) {\displaystyle {\begin{aligned}&\;\left\vert (e_{4,\,j}-e_{3,\,j})(e_{1,\,j}-e_{0,\,j})\right\vert \;\leq \;{\frac {1}{2}}\,(\alpha _{2}^{2}\,(e_{4,\,j}-e_{3,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{2}^{2})\\&\;\left\vert (e_{3,\,j}-e_{2,\,j})(e_{1,\,j}-e_{0,\,j})\right\vert \;\leq \;{\frac {1}{2}}\,(\alpha _{3}^{2}\,(e_{3,\,j}-e_{2,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{3}^{2})\\&\;\left\vert (e_{2,\,j}-e_{1,\,j})(e_{1,\,j}-e_{0,\,j})\right\vert \;\leq \;{\frac {1}{2}}\,(\alpha _{4}^{2}\,(e_{2,\,j}-e_{1,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{4}^{2})\\\end{aligned}}}
| ( e m , j − e m − 1 , j ) ( e m + 1 , j − e m , j ) | ≤ 1 2 ( β 2 2 ( e m , j − e m − 1 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 2 2 ) | ( e m − 1 , j − e m − 2 , j ) ( e m + 1 , j − e m , j ) | ≤ 1 2 ( β 3 2 ( e m − 1 , j − e m − 2 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 3 2 ) | ( e m − 2 , j − e m − 3 , j ) ( e m + 1 , j − e m , j ) | ≤ 1 2 ( β 4 2 ( e m − 2 , j − e m − 3 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 4 2 ) {\displaystyle {\begin{aligned}&\;\left\vert (e_{m,\,j}-e_{m-1,\,j})(e_{m+1,\,j}-e_{m,\,j})\right\vert \\&\quad \quad \quad \leq \;{\frac {1}{2}}\,(\beta _{2}^{2}\,(e_{m,\,j}-e_{m-1,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{2}^{2})\\&\;\left\vert (e_{m-1,\,j}-e_{m-2,\,j})(e_{m+1,\,j}-e_{m,\,j})\right\vert \\&\quad \quad \quad \leq \;{\frac {1}{2}}\,(\beta _{3}^{2}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{3}^{2})\\&\;\left\vert (e_{m-2,\,j}-e_{m-3,\,j})(e_{m+1,\,j}-e_{m,\,j})\right\vert \\&\quad \quad \quad \leq \;{\frac {1}{2}}\,(\beta _{4}^{2}\,(e_{m-2,\,j}-e_{m-3,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{4}^{2})\\\end{aligned}}}
现在,将所有不等式代入表达式。
7 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − 1 6 ∑ i = 2 m − 1 ( e i + 1 , j − e i , j ) ( e i , j − e i − 1 , j ) − 1 3 ( e 1 , j − e 0 , j ) 2 − 1 3 ( e m + 1 , j − e m , j ) 2 + 1 12 ( e 4 , j − e 3 , j ) ( e 1 , j − e 0 , j ) − 1 3 ( e 3 , j − e 2 , j ) ( e 1 , j − e 0 , j ) + 1 3 ( e 2 , j − e 1 , j ) ( e 1 , j − e 0 , j ) + 1 3 ( e m , j − e m − 1 , j ) ( e m + 1 , j − e m , j ) − 1 3 ( e m − 1 , j − e m − 2 , j ) ( e m + 1 , j − e m , j ) + 1 12 ( e m − 2 , j − e m − 3 , j ) ( e m + 1 , j − e m , j ) {\displaystyle {\begin{aligned}&{\frac {7}{6}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}-{\frac {1}{6}}\sum _{i=2}^{m-1}(e_{i+1,\,j}-e_{i,\,j})(e_{i,\,j}-e_{i-1,\,j})-{\frac {1}{3}}\,(e_{1,\,j}-e_{0,\,j})^{2}\\&-{\frac {1}{3}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}+{\frac {1}{12}}\,(e_{4,\,j}-e_{3,\,j})\,(e_{1,\,j}-e_{0,\,j})\\&-{\frac {1}{3}}\,(e_{3,\,j}-e_{2,\,j})\,(e_{1,\,j}-e_{0,\,j})+{\frac {1}{3}}\,(e_{2,\,j}-e_{1,\,j})\,(e_{1,\,j}-e_{0,\,j})\\&+{\frac {1}{3}}\,(e_{m,\,j}-e_{m-1,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\;-{\frac {1}{3}}\,(e_{m-1,\,j}-e_{m-2,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\;&+{\frac {1}{12}}\,(e_{m-2,\,j}-e_{m-3,\,j})\,(e_{m+1,\,j}-e_{m,\,j})\\\end{aligned}}}
7 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − 1 6 ( ∑ i = 2 m − 2 ( e i + 1 , j − e i , j ) 2 − 1 2 ( e 3 , j − e 2 , j ) 2 − 1 2 ( e m − 1 , j − e m − 2 , j ) 2 + 1 2 ( α 1 2 ( e 3 , j − e 2 , j ) 2 + ( e 2 , j − e 1 , j ) 2 / α 1 2 ) + 1 2 ( β 1 2 ( e m − 1 , j − e m − 2 , j ) 2 + ( e m , j − e m − 1 , j ) 2 / β 1 2 ) ) − 1 3 ( e 1 , j − e 0 , j ) 2 − 1 3 ( e m + 1 , j − e m , j ) 2 − 1 12 ( 1 2 ( α 2 2 ( e 4 , j − e 3 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 2 2 ) ) − 1 3 ( 1 2 ( α 3 2 ( e 3 , j − e 2 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 3 2 ) ) − 1 3 ( 1 2 ( α 4 2 ( e 2 , j − e 1 , j ) 2 + ( e 1 , j − e 0 , j ) 2 / α 4 2 ) ) − 1 3 ( 1 2 ( β 2 2 ( e m , j − e m − 1 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 2 2 ) ) − 1 3 ( 1 2 ( β 3 2 ( e m − 1 , j − e m − 2 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 3 2 ) ) − 1 12 ( 1 2 ( β 4 2 ( e m − 2 , j − e m − 3 , j ) 2 + ( e m + 1 , j − e m , j ) 2 / β 4 2 ) ) {\displaystyle {\begin{aligned}&{\frac {7}{6}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}-{\frac {1}{6}}\,{\big (}\;\sum _{i=2}^{m-2}(e_{i+1,\,j}-e_{i,\,j})^{2}\;-\;{\frac {1}{2}}\,(e_{3,\,j}-e_{2,\,j})^{2}\;\\&-\;{\frac {1}{2}}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}+\;{\frac {1}{2}}\,(\alpha _{1}^{2}\,(e_{3,\,j}-e_{2,\,j})^{2}+(e_{2,\,j}-e_{1,\,j})^{2}\,/\,\alpha _{1}^{2})\\&+\;{\frac {1}{2}}\,(\beta _{1}^{2}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}+(e_{m,\,j}-e_{m-1,\,j})^{2}\,/\,\beta _{1}^{2})\;{\big )}\\&-{\frac {1}{3}}\,(e_{1,\,j}-e_{0,\,j})^{2}-{\frac {1}{3}}\,(e_{m+1,\,j}-e_{m,\,j})^{2}\\&-{\frac {1}{12}}\,{\big (}{\frac {1}{2}}\,(\alpha _{2}^{2}\,(e_{4,\,j}-e_{3,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{2}^{2}){\big )}\\&-{\frac {1}{3}}\,{\big (}{\frac {1}{2}}\,(\alpha _{3}^{2}\,(e_{3,\,j}-e_{2,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{3}^{2}){\big )}\\&-{\frac {1}{3}}\,{\big (}{\frac {1}{2}}\,(\alpha _{4}^{2}\,(e_{2,\,j}-e_{1,\,j})^{2}+(e_{1,\,j}-e_{0,\,j})^{2}\,/\,\alpha _{4}^{2}){\big )}\\&-{\frac {1}{3}}\,{\big (}{\frac {1}{2}}\,(\beta _{2}^{2}\,(e_{m,\,j}-e_{m-1,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{2}^{2}){\big )}\\&-{\frac {1}{3}}\,{\big (}{\frac {1}{2}}\,(\beta _{3}^{2}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{3}^{2}){\big )}\\&-{\frac {1}{12}}\,{\big (}{\frac {1}{2}}\,(\beta _{4}^{2}\,(e_{m-2,\,j}-e_{m-3,\,j})^{2}+(e_{m+1,\,j}-e_{m,\,j})^{2}\,/\,\beta _{4}^{2}){\big )}\\\end{aligned}}}
= 7 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − 1 6 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 − ( 1 6 + ( 1 24 ) / α 2 2 + ( 1 6 ) / α 3 2 + ( 1 6 ) / α 4 2 ) ( e 1 , j − e 0 , j ) 2 − ( − 1 6 + ( 1 12 ) / α 1 2 + 1 6 α 4 2 ) ( e 2 , j − e 1 , j ) 2 − ( − 1 12 + 1 12 α 1 2 + 1 6 α 3 2 ) ( e 3 , j − e 2 , j ) 2 − ( 1 24 α 2 2 ) ( e 4 , j − e 3 , j ) 2 − ( 1 6 + ( 1 6 ) / β 2 2 + ( 1 6 ) / β 3 2 + ( 1 24 ) / β 4 2 ) ( e m + 1 , j − e m , j ) 2 − ( − 1 6 + ( 1 12 ) / β 1 2 + 1 6 β 2 2 ) ( e m , j − e m − 1 , j ) 2 − ( − 1 12 + 1 12 β 1 2 + 1 6 β 3 2 ) ( e m − 1 , j − e m − 2 , j ) 2 − ( 1 24 β 4 2 ) ( e m − 2 , j − e m − 3 , j ) 2 {\displaystyle {\begin{aligned}&=\;{\frac {7}{6}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}-{\frac {1}{6}}\;\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}\\&\;-\;{\big (}\,{\frac {1}{6}}\,+\,({\frac {1}{24}})\,/\,\alpha _{2}^{2}\,+\,({\frac {1}{6}})\,/\,\alpha _{3}^{2}\,+\,({\frac {1}{6}})\,/\,\alpha _{4}^{2}\,{\big )}\,(e_{1,\,j}-e_{0,\,j})^{2}\\&\;-\;{\big (}\,-{\frac {1}{6}}\,+\,({\frac {1}{12}})\,/\,\alpha _{1}^{2}\,+\,{\frac {1}{6}}\,\alpha _{4}^{2}\,{\big )}\,(e_{2,\,j}-e_{1,\,j})^{2}\\&\;-\;{\big (}\,-{\frac {1}{12}}\,+\,{\frac {1}{12}}\,\alpha _{1}^{2}\,+\,{\frac {1}{6}}\,\alpha _{3}^{2}\,{\big )}\,(e_{3,\,j}-e_{2,\,j})^{2}\\&\;-\;{\big (}\,{\frac {1}{24}}\,\alpha _{2}^{2}\,{\big )}\,(e_{4,\,j}-e_{3,\,j})^{2}\\&\;-\;{\big (}\,{\frac {1}{6}}\,+\,({\frac {1}{6}})\,/\,\beta _{2}^{2}\,+\,({\frac {1}{6}})\,/\,\beta _{3}^{2}\,+\,({\frac {1}{24}})\,/\,\beta _{4}^{2}\,{\big )}\,(e_{m+1,\,j}-e_{m,\,j})^{2}\\&\;-\;{\big (}\,-{\frac {1}{6}}\,+\,({\frac {1}{12}})\,/\,\beta _{1}^{2}\,+\,{\frac {1}{6}}\,\beta _{2}^{2}\,{\big )}\,(e_{m,\,j}-e_{m-1,\,j})^{2}\\&\;-\;{\big (}-{\frac {1}{12}}\,+\,{\frac {1}{12}}\,\beta _{1}^{2}\,+\,{\frac {1}{6}}\,\beta _{3}^{2}\,{\big )}\,(e_{m-1,\,j}-e_{m-2,\,j})^{2}\\&\;-\;{\big (}\,{\frac {1}{24}}\,\beta _{4}^{2}\,{\big )}\,(e_{m-2,\,j}-e_{m-3,\,j})^{2}\\\end{aligned}}}
选择
α 1 2 = β 1 2 = ( 5 − 1 ) / 2 , α 2 2 = β 4 2 = 8 , α 3 2 = α 4 2 = β 2 2 = β 3 2 = ( 11 − 5 ) /
将所有系数在 α i 's {\displaystyle \alpha _{i}{\text{'s}}} 和 β i 's {\displaystyle \beta _{i}{\text{'s}}} 中乘以 1 3 {\displaystyle {\frac {1}{3}}} ,得到长期寻求的不等式
∑ i = 1 m e i , j ( − h 2 ( ∂ h 2 ∂ h x 2 ) i , j e ) ≥ 2 3 ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 {\displaystyle \sum _{i=1}^{m}e_{i,\,j}\,(-h^{2}\,({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)\;\geq \;{\frac {2}{3}}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}} .
以及
∑ j = 1 n ∑ i = 1 m e i , j ( − ( ∂ h 2 ∂ h x 2 ) i , j e ) ≥ 2 3 h − 2 ∑ j = 1 n ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 {\displaystyle \sum _{j=1}^{n}\sum _{i=1}^{m}e_{i,\,j}\,(-\,({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)\;\geq \;{\frac {2}{3}}\,h^{-2}\,\sum _{j=1}^{n}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}} .
以完全相同的方式对 y {\displaystyle y} 维度进行推理
∑ j = 1 n e i , j ( − k 2 ( ∂ k 2 ∂ k y 2 ) i , j e ) ≥ 2 3 ∑ j = 0 n ( e i , j + 1 − e i , j ) 2 {\displaystyle \sum _{j=1}^{n}e_{i,\,j}\,(-k^{2}\,({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,e)\;\geq \;{\frac {2}{3}}\sum _{j=0}^{n}(e_{i,\,j+1}-e_{i,\,j})^{2}} .
以及
∑ i = 1 m ∑ j = 1 n e i , j ( − ( ∂ k 2 ∂ k y 2 ) i , j e ) ≥ 2 3 k − 2 ∑ i = 1 m ∑ j = 0 n ( e i , j + 1 − e i , j ) 2 {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\,({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,e)\;\geq \;{\frac {2}{3}}\,k^{-2}\,\sum _{i=1}^{m}\sum _{j=0}^{n}(e_{i,\,j+1}-e_{i,\,j})^{2}} .
应用 ∑ i = 1 m ∑ j = 1 n e i , j ( − Δ i , j e ) = {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\Delta _{i,\,j}\,e)\;=}
∑ j = 1 n ∑ i = 1 m e i , j ( − ( ∂ h 2 ∂ h x 2 ) i , j e ) + ∑ i = 1 m ∑ j = 1 n e i , j ( − ( ∂ k 2 ∂ k y 2 ) i , j e ) {\displaystyle \sum _{j=1}^{n}\sum _{i=1}^{m}e_{i,\,j}\,(-({\partial _{h}^{2} \over \partial _{h}x^{2}})_{i,\,j}\,e)\;+\;\sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-({\partial _{k}^{2} \over \partial _{k}y^{2}})_{i,\,j}\,e)}
得到不等式 ∑ i = 1 m ∑ j = 1 n e i , j ( − Δ i , j e ) {\displaystyle \sum _{i=1}^{m}\sum _{j=1}^{n}e_{i,\,j}\,(-\Delta _{i,\,j}\,e)}
≥ 2 3 h − 2 ∑ j = 1 n ∑ i = 0 m ( e i + 1 , j − e i , j ) 2 + 2 3 k − 2 ∑ i = 1 m ∑ j = 0 n ( e i , j + 1 − e i , j ) 2 {\displaystyle \geq \;{\frac {2}{3}}\,h^{-2}\,\sum _{j=1}^{n}\sum _{i=0}^{m}(e_{i+1,\,j}-e_{i,\,j})^{2}\;+\;{\frac {2}{3}}\,k^{-2}\,\sum _{i=1}^{m}\sum _{j=0}^{n}(e_{i,\,j+1}-e_{i,\,j})^{2}} .