跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移动到侧边栏
隐藏
开始
1
已解决问题
切换目录
A-level 数学/OCR/C2/积分/解答
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Wikidata item
外观
移动到侧边栏
隐藏
来自维基教科书,开放的书籍,为开放的世界
<
A-level 数学
|
OCR
|
C2
|
积分
已解决问题
[
编辑
|
编辑源代码
]
1a)
∫
2
x
5
d
x
{\displaystyle \int 2x^{5}\,dx}
使用我们的规则:
∫
d
y
d
x
=
x
n
d
x
{\displaystyle \int {\frac {dy}{dx}}=x^{n}dx}
等于
y
=
x
(
n
+
1
)
(
n
+
1
)
+
C
{\displaystyle y={\frac {x^{(n+1)}}{(n+1)}}+C}
我们得到
y
=
2
x
6
6
+
C
{\displaystyle y={\frac {2x^{6}}{6}}+C}
b)
∫
7
x
6
+
2
x
3
−
x
2
d
x
{\displaystyle \int 7x^{6}+2x^{3}-x^{2}\,dx}
再次使用我们的规则,我们会得到
y
=
x
7
+
x
4
2
−
x
3
3
+
C
{\displaystyle y=x^{7}+{\frac {x^{4}}{2}}-{\frac {x^{3}}{3}}+C}
2a)
∫
x
+
5
d
x
{\displaystyle \int x+5\,dx}
已知点
(
0
,
3
)
{\displaystyle (0,3)}
位于曲线上。
使用我们的规则,积分变为
y
=
x
2
2
+
5
x
+
C
{\displaystyle y={\frac {x^{2}}{2}}+5x+C}
现在我们可以代入我们的点
(
0
,
3
)
{\displaystyle (0,3)}
,因此
3
=
0
2
2
+
5
(
0
)
+
C
{\displaystyle 3={\frac {0^{2}}{2}}+5(0)+C}
所以 C = 3
b)
∫
3
x
2
+
7
x
+
0.1
d
x
{\displaystyle \int 3x^{2}+7x+0.1\,dx}
计算这个积分我们得到:
x
3
+
7
x
2
2
+
0.1
x
+
C
{\displaystyle x^{3}+{\frac {7x^{2}}{2}}+0.1x+C}
已知 (2,2),代入这些点
2
=
2
3
+
7
(
2
2
)
2
+
0.2
+
C
{\displaystyle 2=2^{3}+{\frac {7(2^{2})}{2}}+0.2+C}
2
=
8
+
14
+
0.2
+
C
{\displaystyle 2=8+14+0.2+C}
C
=
−
20.2
{\displaystyle C=-20.2}
3a)
∫
0
2
x
+
1
d
x
{\displaystyle \int _{0}^{2}x+1\,dx}
计算得到
⌊
x
2
2
+
x
⌉
0
2
{\displaystyle {\Bigg \lfloor }{\frac {x^{2}}{2}}+x{\Bigg \rceil }_{0}^{2}}
代入值得到
⌊
(
2
2
2
+
2
)
−
(
0
2
2
+
0
)
⌉
{\displaystyle {\Bigg \lfloor }\left({\frac {2^{2}}{2}}+2\right)-\left({\frac {0^{2}}{2}}+0\right){\Bigg \rceil }}
=
4
{\displaystyle =4}
b)
∫
−
3
4.7
1
7
x
1
3
+
1
d
x
{\displaystyle \int _{-3}^{4.7}{\frac {1}{7}}x^{\frac {1}{3}}+1\,dx}
计算得到
⌊
3
x
4
3
28
+
x
⌉
−
3
4.7
{\displaystyle {\Bigg \lfloor }{\frac {3x^{\frac {4}{3}}}{28}}+x{\Bigg \rceil }_{-3}^{4.7}}
⌊
(
3
(
4.7
)
4
3
28
+
4.7
)
−
(
3
(
−
3
)
4
3
28
−
3
)
⌉
{\displaystyle {\Bigg \lfloor }\left({\frac {3(4.7)^{\frac {4}{3}}}{28}}+4.7\right)-\left({\frac {3(-3)^{\frac {4}{3}}}{28}}-3\right){\Bigg \rceil }}
≈
8.08
{\displaystyle \approx 8.08}
4)
问题只是要求计算这个定积分
∫
−
2
0
(
y
=
−
x
4
−
1
2
x
3
+
3
x
2
)
d
x
=
⌊
(
−
1
5
x
5
−
1
8
x
4
+
x
3
)
⌉
−
2
0
=
−
(
−
1
5
∗
−
2
5
−
1
8
∗
−
2
4
−
2
3
)
=
3.6
{\displaystyle {\begin{aligned}\int _{-2}^{0}{\bigg (}y=-x^{4}-{\frac {1}{2}}x^{3}+3x^{2}{\bigg )}\,dx&={\Bigg \lfloor }\left({\frac {-1}{5}}x^{5}-{\frac {1}{8}}x^{4}+x^{3}\right){\Bigg \rceil }_{-2}^{0}\\&=-{\bigg (}{\frac {-1}{5}}*-2^{5}-{\frac {1}{8}}*-2^{4}-2^{3}{\bigg )}\\&=3.6\end{aligned}}}
类别
:
书籍:A-level 数学/OCR/C2
华夏公益教科书