算术/舍入
外观
< 算术
为了对一个数字进行舍入,你需要查看小数点右边的数字。如果小数点右边的第一个数字的等级(参见拼写数字)等于或高于 5,我们将整数部分加 1,并舍去小数点右边的数字;这被称为向上舍入。如果小数点右边的第一个数字的等级小于 5,我们只需重新写入该数字,并排除小数点右边的所有数字;这被称为向下舍入。请注意,在数字向上或向下舍入后,小数点右边的所有数字都被丢弃,并且只写下小数点左边的数字。
最基本的舍入形式是用一个整数来替换一个任意数字。
有很多方法可以将一个数字 y 舍入到一个整数 q。最常见的方法是
- 向下舍入(或取floor,或向负无穷大舍入):q 是不超过 y 的最大整数。
- 向上舍入(或取ceiling,或向正无穷大舍入):q 是不小于 y 的最小整数。
- .
- 向零舍入(或截断,或远离无穷大舍入):q 是 y 的整数部分,没有其小数部分。
- 远离零舍入(或向无穷大舍入):如果 y 是一个整数,q 是 y;否则 q 是最接近 0 的整数,并且 y 介于 0 和 q 之间。符号函数用于确定符号
- 四舍五入:q 是最接近 y 的整数。
前四种方法被称为定向舍入,因为从原始数字 y 到舍入值 q 的位移都朝向或远离同一个极限值(0,+∞,或 −∞)。
如果 y 是正数,向下舍入与向零舍入相同,向上舍入与远离零舍入相同。如果 y 是负数,向下舍入与远离零舍入相同,向上舍入与向零舍入相同。无论哪种情况,如果 y 是整数,q 只是 y。以下是舍入方法的表格
y | 舍入 向下 (向 −∞) |
舍入 向上 (向 +∞) |
舍入 向 零 |
舍入 远离 零 |
舍入 到 最接近 |
---|---|---|---|---|---|
+13.67 | +13 | +14 | +13 | +14 | +14 |
+13.50 | +13 | +14 | +13 | +14 | +14 |
+13.35 | +13 | +14 | +13 | +14 | +13 |
+13.00 | +13 | +13 | +13 | +13 | +13 |
0 | 0 | 0 | 0 | 0 | 0 |
−13.00 | −13 | −13 | −13 | −13 | −13 |
−13.35 | −14 | −13 | −13 | −14 | −13 |
−13.50 | −14 | −13 | −13 | −14 | −14 |
−13.67 | −14 | −13 | −13 | −14 | −14 |
舍入方法的选择会对结果产生非常显著的影响。