跳转到内容

基础代数/多项式/零次和负次幂

来自维基教科书,开放的书籍,开放的世界

在处理零次幂或负次幂时,你需要知道两件非常重要的事情。


首先,任何数的零次幂都等于 1。例如,(-50)0 = 1

有一个数**不能**被提升到零次幂,00 不存在!

在处理负次幂时,有一个简单的技巧。将分数中负次幂所在的部分进行交换,次幂变为正数。

a-2 = 1/a2

1/a-3 = a3

如果我们有一些更复杂的东西,我们只移动负次幂的部分。这些过程只适用于乘法。如果涉及加减法,那么我们就进入比代数 1 稍微复杂一点的东西了......

(a-2c3)/b-1 = (bc3)/a2

类似这样的东西就不遵循上述规则

(a-2 + b5)/(c6)

这个问题需要多做一些工作:将分数拆开,分别处理每个部分,并得到两个分数而不是一个漂亮的答案。这是可能的,但它不像其他例子或练习题那样流畅。

示例问题

[编辑 | 编辑源代码]

(-2)2 = 4.
-22 = -4.

练习题

[编辑 | 编辑源代码]

使用 ^ 表示指数

1

(5645848213489487561864756189465548914564751567)0 =

2

(a-3b4c-1)-2 =

3

a-8b-2c-1 =

4

a2b-3c4 =

华夏公益教科书