( a + b ) 2 {\displaystyle (a+b)^{2}} = ( a + b ) ( a + b ) {\displaystyle =(a+b)(a+b)} = a ( a + b ) + b ( a + b ) {\displaystyle =a(a+b)+b(a+b)} = a 2 + a b + a b + b 2 {\displaystyle =a^{2}+ab+ab+b^{2}} = a 2 + 2 a b + b 2 {\displaystyle =a^{2}+2ab+b^{2}}
( a − b ) 2 {\displaystyle (a-b)^{2}} = ( a − b ) ( a − b ) {\displaystyle =(a-b)(a-b)} = a ( a − b ) − b ( a − b ) {\displaystyle =a(a-b)-b(a-b)} = a 2 − a b − a b + b 2 {\displaystyle =a^{2}-ab-ab+b^{2}} = a 2 − 2 a b + b 2 {\displaystyle =a^{2}-2ab+b^{2}}
a 2 − b 2 {\displaystyle a^{2}-b^{2}} = a 2 + a b − a b − b 2 {\displaystyle =a^{2}+ab-ab-b^{2}} = a ( a + b ) − b ( a + b ) {\displaystyle =a(a+b)-b(a+b)} = ( a + b ) ( a − b ) {\displaystyle =(a+b)(a-b)}
( a + b ) 3 {\displaystyle (a+b)^{3}} = ( a + b ) × ( a + b ) 2 {\displaystyle =(a+b)\times (a+b)^{2}} = ( a + b ) ( a 2 + 2 a b + b 2 ) {\displaystyle =(a+b)\left(a^{2}+2ab+b^{2}\right)} = a ( a 2 + 2 a b + b 2 ) + b ( a 2 + 2 a b + b 2 ) {\displaystyle =a\left(a^{2}+2ab+b^{2}\right)+b\left(a^{2}+2ab+b^{2}\right)} = a 3 + 2 a 2 b + a b 2 + a 2 b + 2 a b 2 + b 3 {\displaystyle =a^{3}+2a^{2}b+ab^{2}+a^{2}b+2ab^{2}+b^{3}} = a 3 + 3 a 2 b + 3 a b 2 + b 3 {\displaystyle =a^{3}+3a^{2}b+3ab^{2}+b^{3}}
( a 3 − b 3 ) {\displaystyle (a^{3}-b^{3})} = ( a − b ) × ( a − b ) 2 {\displaystyle =(a-b)\times (a-b)^{2}} = ( a − b ) ( a 2 − 2 a b + b 2 ) {\displaystyle =(a-b)\left(a^{2}-2ab+b^{2}\right)} = a ( a 2 − 2 a b + b 2 ) − b ( a 2 − 2 a b + b 2 ) {\displaystyle =a\left(a^{2}-2ab+b^{2}\right)-b\left(a^{2}-2ab+b^{2}\right)} = a 3 − 2 a 2 b + a b 2 − a 2 b + 2 a b 2 − b 3 {\displaystyle =a^{3}-2a^{2}b+ab^{2}-a^{2}b+2ab^{2}-b^{3}} = a 3 − 3 a 2 b + 3 a b 2 − b 3 {\displaystyle =a^{3}-3a^{2}b+3ab^{2}-b^{3}}