本章将使用多点、多路径、多曲面和多体积等简单概念,对向量微积分进行直观的解释。 标量场不会简单地被视为函数 f : R 3 → R {\displaystyle f:\mathbb {R} ^{3}\to \mathbb {R} } ,该函数在给定输入点的情况下返回一个数字,向量场也不会简单地被视为函数 F : R 3 → R 3 {\displaystyle \mathbf {F} :\mathbb {R} ^{3}\to \mathbb {R} ^{3}} ,该函数在给定输入点的情况下返回一个向量。
基本结构是多点、多路径、多曲面和多体积。
点 q 0 {\displaystyle \mathbf {q} _{0}} 是一个任意位置。一个“多点”是指一组点/权重对: Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} ,其中 w i {\displaystyle w_{i}} 是分配给点 q i {\displaystyle \mathbf {q} _{i}} 的“权重”。给定两个点/权重对 ( q , w 1 ) {\displaystyle (\mathbf {q} ,w_{1})} 和 ( q , w 2 ) {\displaystyle (\mathbf {q} ,w_{2})} 覆盖了相同的点 q {\displaystyle \mathbf {q} } ,权重加起来得到 ( q , w 1 + w 2 ) {\displaystyle (\mathbf {q} ,w_{1}+w_{2})} ,它代替了 ( q , w 1 ) {\displaystyle (\mathbf {q} ,w_{1})} 和 ( q , w 2 ) {\displaystyle (\mathbf {q} ,w_{2})} 。任何对 ( q , 0 ) {\displaystyle (\mathbf {q} ,0)} 都将被移除。 Q {\displaystyle \mathbf {Q} } 可以包含无限多个点,每个点可以有无限小的权重。
任意一点 q 0 {\displaystyle \mathbf {q} _{0}} 可以用标量场 δ 0 ( q ; q 0 ) = { + ∞ 3 ( q = q 0 ) 0 ( q ≠ q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})=\left\{{\begin{array}{cc}+\infty ^{3}&(\mathbf {q} =\mathbf {q} _{0})\\0&(\mathbf {q} \neq \mathbf {q} _{0})\end{array}}\right.} 描述。这是以点 q 0 {\displaystyle \mathbf {q} _{0}} 为中心的“狄拉克 delta 函数”。 + ∞ 3 {\displaystyle +\infty ^{3}} 是包裹点 q 0 {\displaystyle \mathbf {q} _{0}} 的无限小体积的倒数。为了进一步解释这一点,设 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 是一个包裹点 q 0 {\displaystyle \mathbf {q} _{0}} 的体积为 v {\displaystyle v} 的微小体积。 δ 0 ( q ; q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})} 可以用 Δ 0 ( q ; q 0 , v ) = { 1 / v ( q ∈ ω 0 ( q 0 , v ) ) 0 ( q ∉ ω 0 ( q 0 , v ) ) {\displaystyle \Delta _{0}(\mathbf {q} ;\mathbf {q} _{0},v)=\left\{{\begin{array}{cc}1/v&(\mathbf {q} \in \omega _{0}(\mathbf {q} _{0},v))\\0&(\mathbf {q} \notin \omega _{0}(\mathbf {q} _{0},v))\end{array}}\right.} 近似。一个质量为 1 的物体被塞进了 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 中,从而产生无限高的密度。由于 δ 0 ( q ; q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})} 本质上是一个密度函数,它带有单位 [ length − 3 ] {\displaystyle [{\text{length}}^{-3}]} 。
多点 Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} 可以用标量场 δ 0 ( q ; Q ) = ∑ i = 1 k w i δ 0 ( q ; q i ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {Q} )=\sum _{i=1}^{k}w_{i}\delta _{0}(\mathbf {q} ;\mathbf {q} _{i})} 来描述。如果 Q {\displaystyle \mathbf {Q} } 包含无限多个点,并且每个点具有无穷小的权重,则 δ 0 ( q ; Q ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {Q} )} 是一个密度函数。
在下图中,左面板中的多点通过对每个单元格的点权重进行平均,转换为中心面板中的标量场。每个单元格的体积应该无限小。右面板中的多点对应于同一个标量场,并且处于更规范的形式,其中相反权重的点已经抵消。
左边的多点(一系列加权点)可以用中间的标量场表示。右边是具有相同标量场的更规范的多点,其中附近符号相反的点已经抵消。
下图显示了如何生成连续标量场 ρ : R 3 → R {\displaystyle \rho :\mathbb {R} ^{3}\to \mathbb {R} } 作为一系列点的集合。考虑位置 q 0 {\displaystyle \mathbf {q} _{0}} 以及具有体积 v {\displaystyle v} 的无限小体积 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 。包含在 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 中的点权重总和为 ∭ q ∈ ω 0 ( q 0 , v ) ρ ( q ) d V ≈ v ⋅ ρ ( q 0 ) {\displaystyle \iiint _{\mathbf {q} \in \omega _{0}(\mathbf {q} _{0},v)}\rho (\mathbf {q} )dV\approx v\cdot \rho (\mathbf {q} _{0})} 。然后将该权重 v ⋅ ρ ( q 0 ) {\displaystyle v\cdot \rho (\mathbf {q} _{0})} 分散到散布在体积 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 上的任意多个点。
可以将权重为 1 的单个点“涂抹”到其所在的体积上。将该点分成越来越多的具有分数权重的点。经过无限步后,将有无限多个点填充该体积,并且每个点都具有无穷小的权重。
概括地说,多点由一个标量场表示,该标量场量化了每个点的**密度**,任何量化每个点的**密度**的标量场最好解释为多点。
A simple path (also called a simple curve) C {\displaystyle C} is an oriented continuous curve that extends from a starting point C ( 0 ) {\displaystyle C(0)} to an ending point C ( 1 ) {\displaystyle C(1)} . Intermediate points are indexed by t ∈ [ 0 , 1 ] {\displaystyle t\in [0,1]} and are denoted by C ( t ) {\displaystyle C(t)} . A simple path should be continuous (no breaks), and may intersect or retrace itself. A "multi-path" is a set of simple-path/weight pairs: C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} where w i {\displaystyle w_{i}} is the weight that is assigned to path C i {\displaystyle C_{i}} . Given two path/weight pairs ( C , w 1 ) {\displaystyle (C,w_{1})} and ( C , w 2 ) {\displaystyle (C,w_{2})} that cover the same path C {\displaystyle C} , the weights add up to get ( C , w 1 + w 2 ) {\displaystyle (C,w_{1}+w_{2})} which replaces ( C , w 1 ) {\displaystyle (C,w_{1})} and ( C , w 2 ) {\displaystyle (C,w_{2})} . Any pair ( C , 0 ) {\displaystyle (C,0)} is removed. In addition given two path/weight pairs ( C 1 , w ) {\displaystyle (C_{1},w)} and ( C 2 , w ) {\displaystyle (C_{2},w)} with the same weight w {\displaystyle w} and C 1 ( 1 ) = C 2 ( 0 ) {\displaystyle C_{1}(1)=C_{2}(0)} , then C 1 {\displaystyle C_{1}} and C 2 {\displaystyle C_{2}} can be linked end-to-end to get the pair ( C 1 + C 2 , w ) {\displaystyle (C_{1}+C_{2},w)} which replaces ( C 1 , w ) {\displaystyle (C_{1},w)} and ( C 2 , w ) {\displaystyle (C_{2},w)} . Assigning a path a negative weight effectively reverses its orientation: if − C {\displaystyle -C} denotes path C {\displaystyle C} with the opposite orientation, then ( C , − w ) {\displaystyle (C,-w)} is equivalent to ( − C , w ) {\displaystyle (-C,w)} . C {\displaystyle \mathbf {C} } can consist of infinitely many paths, and each path may have an infinitesimal weight.
此图像描绘了简单路径的狄拉克δ函数。与点的狄拉克δ函数(它是标量场)不同,路径的狄拉克δ函数是向量场。
An arbitrary curve C {\displaystyle C} can be described by the vector field δ 1 ( q ; C ) = { ( + ∞ 2 ) n ^ ( q ; C ) ( q ∈ C ) 0 ( q ∉ C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)=\left\{{\begin{array}{cc}(+\infty ^{2}){\hat {\mathbf {n} }}(\mathbf {q} ;C)&(\mathbf {q} \in C)\\\mathbf {0} &(\mathbf {q} \notin C)\end{array}}\right.} . This is the "Dirac delta function" for the curve C {\displaystyle C} . n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} is the unit length tangent vector to path C {\displaystyle C} at point q ∈ C {\displaystyle \mathbf {q} \in C} . n ^ ( q ; C ) = 0 {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)=\mathbf {0} } if q ∉ C {\displaystyle \mathbf {q} \notin C} . If there are multiple tangent vectors due to C {\displaystyle C} intersecting itself, then n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} is the sum of these tangent vectors. The + ∞ 2 {\displaystyle +\infty ^{2}} is the inverse of the cross-sectional area of an infinitely thin tube that encloses C {\displaystyle C} . To further explain this, let ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} be a thin tube with cross-sectional area a {\displaystyle a} that encloses C {\displaystyle C} . δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} can be approximated by Δ 1 ( q ; C , a ) = { ( 1 / a ) n ^ ∗ ( q ; C , a ) ( q ∈ ω 1 ( C , a ) ) 0 ( q ∉ ω 1 ( C , a ) ) {\displaystyle \Delta _{1}(\mathbf {q} ;C,a)=\left\{{\begin{array}{cc}(1/a){\hat {\mathbf {n} }}_{*}(\mathbf {q} ;C,a)&(\mathbf {q} \in \omega _{1}(C,a))\\\mathbf {0} &(\mathbf {q} \notin \omega _{1}(C,a))\end{array}}\right.} . n ^ ∗ ( q ; C , a ) {\displaystyle {\hat {\mathbf {n} }}_{*}(\mathbf {q} ;C,a)} is the generalization of n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} to the tube ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} . A path weight of 1 is being crammed into the cross-sectional area of ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} yielding an infinitely high path density. Since δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} is essentially a density over area, it brings with it the units [ length − 2 ] {\displaystyle [{\text{length}}^{-2}]} .
右侧的图像描绘了简单曲线的狄拉克δ函数。向量场 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} 在包围路径的无限薄管以外的任何地方都为 0 {\displaystyle \mathbf {0} } 。在管内,向量平行于路径,其大小等于横截面积的倒数。狄拉克δ函数是当管变得无限薄时的极限。
多路径 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} 可以用向量场 δ 1 ( q ; C ) = ∑ i = 1 k w i δ 1 ( q ; C i ) {\displaystyle \delta _{1}(\mathbf {q} ;\mathbf {C} )=\sum _{i=1}^{k}w_{i}\delta _{1}(\mathbf {q} ;C_{i})} 来描述。如果 C {\displaystyle \mathbf {C} } 由无数条路径组成,每条路径的权重都无限小,那么 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;\mathbf {C} )} 是一个流量密度函数。
在下图中,左面板中的多路径通过计算每个单元格的总位移并在体积上取平均值来转换为中心面板中的向量场。每个单元格的体积应该是无限小的。右面板中的多路径对应于同一个向量场,并且处于更规范的形式,其中各个路径不相互交叉。
左边的多路径(一组加权路径)可以用中间的向量场表示(在生成向量场时,每条路径都被近似地通过一条边的中间进入每个单元格)。右边是一个更规范的多路径,具有相同的向量场,其中方向相反的附近路径段已抵消,并且各个路径不相互交叉。
概括地说,多路径由一个向量场表示,该向量场量化了每个点的**路径/流量密度**,任何量化每个点的**流量密度**的向量场(例如电流密度)最好解释为多路径。(流量密度是一个向量,它指向流动的净方向,并且其长度等于通过垂直于净流动的表面的单位面积的流量。)
A simple surface σ {\displaystyle \sigma } is an oriented continuous surface. A simple surface may intersect or fold back on itself. A "multi-surface" is a set of simple-surface/weight pairs: S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} where w i {\displaystyle w_{i}} is the weight that is assigned to surface σ i {\displaystyle \sigma _{i}} . Given two surface/weight pairs ( σ , w 1 ) {\displaystyle (\sigma ,w_{1})} and ( σ , w 2 ) {\displaystyle (\sigma ,w_{2})} that cover the same surface σ {\displaystyle \sigma } , the weights add up to get ( σ , w 1 + w 2 ) {\displaystyle (\sigma ,w_{1}+w_{2})} which replaces ( σ , w 1 ) {\displaystyle (\sigma ,w_{1})} and ( σ , w 2 ) {\displaystyle (\sigma ,w_{2})} . Any pair ( σ , 0 ) {\displaystyle (\sigma ,0)} is removed. In addition given two surface/weight pairs ( σ 1 , w ) {\displaystyle (\sigma _{1},w)} and ( σ 2 , w ) {\displaystyle (\sigma _{2},w)} with the same weight w {\displaystyle w} , then σ 1 {\displaystyle \sigma _{1}} and σ 2 {\displaystyle \sigma _{2}} can be combined to get the pair ( σ 1 + σ 2 , w ) {\displaystyle (\sigma _{1}+\sigma _{2},w)} which replaces ( σ 1 , w ) {\displaystyle (\sigma _{1},w)} and ( σ 2 , w ) {\displaystyle (\sigma _{2},w)} . Assigning a surface a negative weight effectively reverses its orientation: if − σ {\displaystyle -\sigma } denotes surface σ {\displaystyle \sigma } with the opposite orientation, then ( σ , − w ) {\displaystyle (\sigma ,-w)} is equivalent to ( − σ , w ) {\displaystyle (-\sigma ,w)} . S {\displaystyle \mathbf {S} } can consist of infinitely many surfaces, and each surface may have an infinitesimal weight.
An arbitrary surface σ {\displaystyle \sigma } can be described by the vector field δ 2 ( q ; σ ) = { ( + ∞ ) n ^ ( q ; σ ) ( q ∈ σ ) 0 ( q ∉ σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )=\left\{{\begin{array}{cc}(+\infty ){\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )&(\mathbf {q} \in \sigma )\\\mathbf {0} &(\mathbf {q} \notin \sigma )\end{array}}\right.} . This is the "Dirac delta function" for the surface σ {\displaystyle \sigma } . n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} is the unit length normal vector to surface σ {\displaystyle \sigma } at point q ∈ σ {\displaystyle \mathbf {q} \in \sigma } . n ^ ( q ; σ ) = 0 {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )=\mathbf {0} } if q ∉ σ {\displaystyle \mathbf {q} \notin \sigma } . If there are multiple normal vectors due to σ {\displaystyle \sigma } intersecting itself, then n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} is the sum of these normal vectors. The + ∞ {\displaystyle +\infty } is the inverse of the thickness of an infinitely thin membrane that encloses σ {\displaystyle \sigma } . To further explain this, let ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} be a thin membrane with thickness t {\displaystyle t} that encloses σ {\displaystyle \sigma } . δ 2 ( q ; σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )} can be approximated by Δ 2 ( q ; σ , t ) = { ( 1 / t ) n ^ ∗ ( q ; σ , t ) ( q ∈ ω 2 ( σ , t ) ) 0 ( q ∉ ω 2 ( σ , t ) ) {\displaystyle \Delta _{2}(\mathbf {q} ;\sigma ,t)=\left\{{\begin{array}{cc}(1/t){\hat {\mathbf {n} }}_{*}(\mathbf {q} ;\sigma ,t)&(\mathbf {q} \in \omega _{2}(\sigma ,t))\\\mathbf {0} &(\mathbf {q} \notin \omega _{2}(\sigma ,t))\end{array}}\right.} . n ^ ∗ ( q ; σ , t ) {\displaystyle {\hat {\mathbf {n} }}_{*}(\mathbf {q} ;\sigma ,t)} is the generalization of n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} to the membrane ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} . A surface weight of 1 is being sandwiched into the thickness of ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} yielding an infinitely high surface density. Since δ 2 ( q ; σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )} is essentially a density over length, it brings with it the units [ length − 1 ] {\displaystyle [{\text{length}}^{-1}]} .
多重曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} 可以用向量场 δ 2 ( q ; S ) = ∑ i = 1 k w i δ 2 ( q ; σ i ) {\displaystyle \delta _{2}(\mathbf {q} ;\mathbf {S} )=\sum _{i=1}^{k}w_{i}\delta _{2}(\mathbf {q} ;\sigma _{i})} 来描述。如果 S {\displaystyle \mathbf {S} } 由无数个曲面组成,每个曲面的权重都无限小,那么 δ 2 ( q ; S ) {\displaystyle \delta _{2}(\mathbf {q} ;\mathbf {S} )} 是一个增益率函数。
在下面的图片中,左边的面板中的多重曲面通过计算每个单元格的总曲面并对体积进行平均转化为中间面板中的向量场。每个单元格的体积应该是无限小的。右面板中的多重曲面对应于相同的向量场,并且处于更规范的形式,其中各个曲面彼此不相交。
左边的多重曲面(一堆带权重的曲面)可以用中间的向量场表示(在生成向量场时,每个曲面都被近似为与中间每个正方形的边缘相交)。右边是一个更规范的多重曲面,它具有相同的向量场,其中方向相反的相邻曲面段相互抵消,并且各个曲面不相互交叉。
总之,多重曲面用一个向量场来表示,该向量场量化了每个点的增益率 。为了描述增益率,想象一下,以首选方向穿过曲面会获得“能量”。增益率是一个向量,它指向能量增加速率最大的方向,并且长度等于单位长度能量增加的最大速率。任何在每个点量化增益率 的向量场(例如力场)最好解释为多重曲面。
A volume Ω {\displaystyle \Omega } is an arbitrary region of space. A "multi-volume" is a set of volume/weight pairs: U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} where w i {\displaystyle w_{i}} is the "weight" that is assigned to volume Ω i {\displaystyle \Omega _{i}} . Given two volume/weight pairs ( Ω , w 1 ) {\displaystyle (\Omega ,w_{1})} and ( Ω , w 2 ) {\displaystyle (\Omega ,w_{2})} that cover the same volume Ω {\displaystyle \Omega } , the weights add up to get ( Ω , w 1 + w 2 ) {\displaystyle (\Omega ,w_{1}+w_{2})} which replaces ( Ω , w 1 ) {\displaystyle (\Omega ,w_{1})} and ( Ω , w 2 ) {\displaystyle (\Omega ,w_{2})} . Any pair ( Ω , 0 ) {\displaystyle (\Omega ,0)} is removed. In addition given two volume/weight pairs ( Ω 1 , w ) {\displaystyle (\Omega _{1},w)} and ( Ω 2 , w ) {\displaystyle (\Omega _{2},w)} with the same weight w {\displaystyle w} and Ω 1 ∩ Ω 2 = ∅ {\displaystyle \Omega _{1}\cap \Omega _{2}=\emptyset } , then Ω 1 {\displaystyle \Omega _{1}} and Ω 2 {\displaystyle \Omega _{2}} can be combined to get the pair ( Ω 1 ∪ Ω 2 , w ) {\displaystyle (\Omega _{1}\cup \Omega _{2},w)} which replaces ( Ω 1 , w ) {\displaystyle (\Omega _{1},w)} and ( Ω 2 , w ) {\displaystyle (\Omega _{2},w)} . U {\displaystyle \mathbf {U} } can consist of infinitely many volumes, and each volume may have an infinitesimal weight.
任意体积 Ω {\displaystyle \Omega } 可以用标量场 δ 3 ( q ; Ω ) = { 1 ( q ∈ Ω ) 0 ( q ∉ Ω ) {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )=\left\{{\begin{array}{cc}1&(\mathbf {q} \in \Omega )\\0&(\mathbf {q} \notin \Omega )\end{array}}\right.} 来描述。这实际上是体积的“狄拉克 δ 函数”类似物,本质上是一个指示函数,指示一个位置是否被 Ω {\displaystyle \Omega } 包含,1 表示是,0 表示否。由于 δ 3 ( q ; Ω ) {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )} 只是一个指示函数,它不带任何单位(它是无量纲的)。
多体积 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} 可以用标量场 δ 3 ( q ; U ) = ∑ i = 1 k w i δ 3 ( q ; Ω i ) {\displaystyle \delta _{3}(\mathbf {q} ;\mathbf {U} )=\sum _{i=1}^{k}w_{i}\delta _{3}(\mathbf {q} ;\Omega _{i})} 来描述。如果 U {\displaystyle \mathbf {U} } 包含无限多个体积,每个体积的权重都无限小,那么 δ 3 ( q ; U ) {\displaystyle \delta _{3}(\mathbf {q} ;\mathbf {U} )} 是一个势函数。
在下图中,左侧面板中的多体积通过对每个单元格中的体积权重进行平均来转换为中间面板中的标量场。每个单元格的体积应该是无限小的。右侧面板中的多体积对应于相同的标量场,并且处于更规范的形式,其中相反权重的体积相互抵消,而剩余的体积已经扩散到每个单元格。
左侧的多体积(加权体积的集合)可以用中间的标量场表示(在生成标量场时,忽略了每个体积的斜角)。右侧是一个具有相同标量场的更规范的多体积,其中相反符号的体积相互抵消,而剩余的体积被涂抹以填充每个单元格。
总之,多体积用一个标量场来表示,该标量场量化了每个点的势 ,任何量化每个点的势 的标量场都可以最好地解释为多体积。
一个重要的要求是,所有多点、多路径、多曲面和多体积都不能延伸到无穷远。所有结构都可以延伸到任意大的范围,只要这个范围不是无界的。允许结构延伸到无穷远会导致后续讨论中出现问题。
对于大多数与向量微积分相关的定理,通常不允许路径延伸到无穷远。
对于大多数与向量微积分相关的定理,通常不允许曲面延伸到无穷远。
对于大多数与向量微积分相关的定理,通常不允许体积延伸到无穷远。
这些部分将描述多点的总权重、多路径的总位移、多曲面的总面积和多体积的总体积。
给定一个多点 Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} ,总点权重显然是 ∑ i = 1 k w i {\displaystyle \sum _{i=1}^{k}w_{i}} 。给定一个标量场 ρ {\displaystyle \rho } 表示多点, ρ {\displaystyle \rho } 的总权重是 ∭ q ∈ R 3 ρ ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )dV} 。给定一个简单点 q 0 {\displaystyle \mathbf {q} _{0}} ,总权重为1,所以 ∭ q ∈ R 3 δ 0 ( q ; q 0 ) d V = 1 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})dV=1} 。
两点之间的位移与连接它们的路径无关。
给定一个简单路径 C {\displaystyle C} ,从点 C ( 0 ) {\displaystyle C(0)} 开始,到点 C ( 1 ) {\displaystyle C(1)} 结束, C {\displaystyle C} 产生的总位移是 ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} 。如右图所示,此位移仅取决于端点。
闭合回路产生的位移是 0 {\displaystyle \mathbf {0} } 。
给定一个多路径 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} , C {\displaystyle \mathbf {C} } 所产生的总位移为 ∑ i = 1 k w i ∫ q ∈ C i d q = ∑ i = 1 k w i ( C i ( 1 ) − C i ( 0 ) ) {\displaystyle \sum _{i=1}^{k}w_{i}\int _{\mathbf {q} \in C_{i}}d\mathbf {q} =\sum _{i=1}^{k}w_{i}(C_{i}(1)-C_{i}(0))} 。
给定一个向量场 J {\displaystyle \mathbf {J} } ,它表示一个多路径, J {\displaystyle \mathbf {J} } 所产生的总位移为 ∭ q ∈ R 3 J ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )dV} 。由于简单路径 C {\displaystyle C} 所产生的位移为 ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} ,因此 ∭ q ∈ R 3 δ 1 ( q ; C ) d V = ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)dV=\int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} 。
路径积分可以转换为体积积分,方法是将位移微分 dq 替换为与体积微分 dV 成比例的表达式。如所示,路径被扩散以填充一个细管。体积积分的被积函数在细管之外的所有点的值为 0。
从 ∫ q ∈ C d q = ∭ q ∈ R 3 δ 1 ( q ; C ) d V {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)dV} 可以观察到,给定路径 C {\displaystyle C} 上的路径积分,微分 d q {\displaystyle d\mathbf {q} } 等于体积积分中的 δ 1 ( q ; C ) d V {\displaystyle \delta _{1}(\mathbf {q} ;C)dV} : ∫ q ∈ C f ( q , d q ) = ∭ q ∈ R 3 f ( q , δ 1 ( q ; C ) d V ) {\displaystyle \int _{\mathbf {q} \in C}f(\mathbf {q} ,d\mathbf {q} )=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{1}(\mathbf {q} ;C)dV)} ,前提是函数 f {\displaystyle f} 在第二个参数中是线性的。在右边的下图中,位移微分 d q = n ^ ⋅ Δ l {\displaystyle d\mathbf {q} ={\hat {\mathbf {n} }}\cdot \Delta l} 等于体积微分 ( n ^ Δ A ) d V = δ 1 ( q ; C ) d V {\displaystyle \left({\frac {\hat {\mathbf {n} }}{\Delta A}}\right)dV=\delta _{1}(\mathbf {q} ;C)dV} ,通过将路径扩散到无限薄的横截面积 Δ A {\displaystyle \Delta A} 上。无限薄管之外的点的被积函数为 0:对于所有点 q ∉ C {\displaystyle \mathbf {q} \notin C} , f ( q , δ 1 ( q ; C ) d V ) = f ( q , 0 ) = 0 {\displaystyle f(\mathbf {q} ,\delta _{1}(\mathbf {q} ;C)dV)=f(\mathbf {q} ,\mathbf {0} )=0} 。
此图展示了一个面积为“A”的平面,其逆时针边界由箭头表示,指向平面外的方向。法向量“n”长度为 1,垂直于该平面,指向与图示一致的平面外。该平面本身可以用向量“A n”来描述。其长度代表面积,其方向代表方向。
给定一个任意定向曲面 σ {\displaystyle \sigma } ,其“逆时针边界”,用 ∂ σ {\displaystyle \partial \sigma } 表示,是 σ {\displaystyle \sigma } 的边界,其方向由以下方式确定:从观察 σ {\displaystyle \sigma } 的方向看,使其穿过的方向指向观察者,则边界 ∂ σ {\displaystyle \partial \sigma } 将 σ {\displaystyle \sigma } 逆时针包裹。
给定一个如右图所示的平面,该平面可以用“曲面向量”来量化,该向量垂直于该平面(法向量)指向首选方向,其长度等于该平面的面积。在右图中,一个平面面积为 A {\displaystyle A} ,并且垂直于单位长度法向量 n ^ {\displaystyle {\hat {\mathbf {n} }}} 。该平面的“曲面向量”是 A ⋅ n ^ {\displaystyle A\cdot {\hat {\mathbf {n} }}} 。
给定一个非平面曲面 σ {\displaystyle \sigma } , σ {\displaystyle \sigma } 的总曲面向量是通过将 σ {\displaystyle \sigma } 的每个无穷小部分的曲面向量相加得到的。总曲面向量是 S = ∬ q ∈ σ d S {\displaystyle \mathbf {S} =\iint _{\mathbf {q} \in \sigma }d\mathbf {S} } 。
类似于路径的总位移只取决于端点的方式,曲面的总曲面向量只取决于其逆时针边界。这不是直观的,将在下面使用两种方法详细解释。
显示了两个不同的曲面。两个曲面具有相同的逆时针边界,因此,每个曲面的“总曲面向量”都相同。类似于路径上的总位移纯粹取决于其端点的方式,曲面的总曲面向量纯粹取决于其边界。
下面显示了与二维空间中的曲面向量相关的两张图片。左边的图片显示了二维空间中的曲面向量。在二维中,曲面被称为一维曲面,类似于路径。一维曲面的边界由两个点组成。一维曲面段的曲面向量是该段的 90 度旋转,并且指向曲面的方向。一维曲面的总曲面向量是所有单个分量的曲面向量的总和。对于曲面的每个分量,曲面向量都是穿过该分量的位移的 90 度旋转,因此总曲面向量是形成曲面边界点的位移的 90 度旋转。这证明在二维中,总曲面向量仅取决于一维曲面的边界。
右侧的图片展示了将二维空间中的 1D 曲面挤压成三维空间中的 2D “带”。顶部显示了一个闭合的“带”。这个“带”是一个始终平行于垂直方向的曲面,其边界形成了两个垂直偏移的相同回路。边界回路也垂直于垂直方向。带本身被分割成许多小矩形,这些矩形的高度与带的高度相同。左下角显示了从上往下看同一个带的视图。可以看出,每个曲面向量的长度与对应矩形段的长度成正比,因为高度都是一致的。右下角,通过将曲面向量绕垂直方向旋转 90 度,曲面向量现在加起来为 0 {\displaystyle \mathbf {0} } ,因此未旋转的曲面向量的总和也是 0 {\displaystyle \mathbf {0} } 。
这幅图描述了在二维空间中,1D 曲面的总曲面向量是两个端点(1D 曲面的边界)之间位移的 90 度旋转,因此它仅仅是端点的函数。在左侧面板中,1D 曲面是一系列黑色线段,每个线段的曲面向量用红色虚线箭头表示。每个曲面向量都是沿曲面位移的 90 度旋转。长灰色线是曲面端点之间的净位移,红色虚线箭头是这个净位移的 90 度旋转。在右侧面板中,粉色箭头显示为红色虚线箭头向量的总和,因此“总曲面”仅仅是 1D 曲面端点的函数。
这幅图演示了闭合带状曲面的总曲面向量为 0。顶部的图片显示了一个带状曲面,该曲面是一个闭合带,其中带的宽度恒定,宽度始终平行于垂直方向,边缘始终垂直于垂直方向。曲面被细分为许多小矩形部分,这些部分的曲面向量如图所示。左下角的图片显示了从上往下看同一个曲面的视图。在右下角的图片中,所有曲面向量都绕垂直方向逆时针旋转了 90 度,并且显然加起来为 0。
闭合带的总曲面向量为 0 {\displaystyle \mathbf {0} } ,意味着如果在不改变其边界的情况下向曲面添加浮雕,总曲面向量将被保留。下面的两个左侧图片给出了通过锤击浮雕来扭曲曲面内部的例子。浮雕引入的垂直曲面是带,它们对总曲面向量贡献了 0 {\displaystyle \mathbf {0} } ,而水平曲面只是被浮雕垂直位移。下面的最右侧图片显示了如果将曲面在无穷小尺度上的“纹理”从“阶梯”(水平曲面和垂直曲面的并集)转换为“光滑斜坡”,反之亦然,总曲面向量是如何保留的。由红色和绿色平面形成的曲面是一个阶梯,而由蓝色平面形成的曲面是一个斜坡。从图片右侧的直角三角形可以看出,这两个曲面的总曲面向量相等。
向曲面添加海拔(这幅图中是凹陷)或浮雕不会改变总曲面向量。红色水平曲面显然是保留的,尽管它们位于不同的海拔高度。绿色垂直曲面在每个层级/海拔高度上加起来为 0。
向曲面添加海拔(这幅图中是凹陷)或浮雕不会改变总曲面向量。水平曲面显然是保留的,尽管它们位于不同的海拔高度。绿色垂直曲面在低于红色下方的曲面时,加起来为它们在红色上方的初始值,并且加起来为 0。
在这幅图中,有两个曲面。第一个曲面是红色和绿色平面的并集,逆时针边界用粗黑色线表示。第二个曲面是蓝色平面,逆时针边界用蓝色虚线表示。红色、绿色和蓝色平面的曲面向量如图所示。第一个曲面的总曲面向量是红色和绿色平面曲面向量的总和,等于蓝色平面的曲面向量。这一切都意味着,将倾斜的平面曲面替换为其水平和垂直分量(投影)不会改变倾斜的平面曲面的总曲面向量。
可以使用简单定向曲线上的总位移来计算特定方向上的净位移。给定一条简单定向曲线 C {\displaystyle C} 和一条方向由法向量 n ^ {\displaystyle {\hat {\mathbf {n} }}} 指示的定向直线,沿 C {\displaystyle C} 的总位移 Δ q {\displaystyle \Delta \mathbf {q} } 可以用来计算直线指示方向的净位移。此位移为 n ^ ⋅ Δ q {\displaystyle {\hat {\mathbf {n} }}\cdot \Delta \mathbf {q} } ,并且仅取决于曲线的端点。
为了便于理解,假设有一个简单的定向曲面 σ {\displaystyle \sigma } ,其边界为逆时针方向的 ∂ σ {\displaystyle \partial \sigma } ,并且有一个定向平面,其法向量为 n ^ {\displaystyle {\hat {\mathbf {n} }}} 。我们感兴趣的是 σ {\displaystyle \sigma } 垂直投影到该平面上的总的有符号面积。 σ {\displaystyle \sigma } 的一个微小平面的投影的有符号面积,其表面向量为 d S {\displaystyle d\mathbf {S} } 为 n ^ ⋅ d S {\displaystyle {\hat {\mathbf {n} }}\cdot d\mathbf {S} } ,总的有符号面积为 ∬ q ∈ σ n ^ ⋅ d S = n ^ ⋅ ∬ q ∈ σ d S = n ^ ⋅ S {\displaystyle \iint _{\mathbf {q} \in \sigma }{\hat {\mathbf {n} }}\cdot d\mathbf {S} ={\hat {\mathbf {n} }}\cdot \iint _{\mathbf {q} \in \sigma }d\mathbf {S} ={\hat {\mathbf {n} }}\cdot \mathbf {S} } ,其中 S {\displaystyle \mathbf {S} } 是 σ {\displaystyle \sigma } 的总表面向量。
投影到平面上的总的有符号面积 n ^ ⋅ S {\displaystyle {\hat {\mathbf {n} }}\cdot \mathbf {S} } 仅仅是边界的函数 ∂ σ {\displaystyle \partial \sigma } ,而与 σ {\displaystyle \sigma } 如何填充其边界 ∂ σ {\displaystyle \partial \sigma } 无关。这比声称总表面向量 S {\displaystyle \mathbf {S} } 仅仅是 ∂ σ {\displaystyle \partial \sigma } 的函数更明显、更清晰:二维空间中由边界包围的面积仅仅是该边界的函数。由于投影面积是有符号的,"上下颠倒"的曲面会投影负面积,并且折叠和悬垂部分会相互抵消。
由于 n ^ ⋅ S {\displaystyle {\hat {\mathbf {n} }}\cdot \mathbf {S} } 仅是 ∂ σ {\displaystyle \partial \sigma } 的函数,对于所有平面方向 n ^ {\displaystyle {\hat {\mathbf {n} }}} 的选择都是如此,那么总表面向量 S {\displaystyle \mathbf {S} } 仅是 ∂ σ {\displaystyle \partial \sigma } 的函数。
给定任意方向的路径,垂直投影到方向直线上的路径所覆盖的总位移与路径内部点的放置无关。位移仅取决于端点。由于无论选择哪条直线都是如此,所以定向曲线生成的总三维位移向量纯粹是其端点的函数,并且如果内部点移动则不会改变。
定向曲面投影到方向平面的总带符号面积仅取决于边界,而与任何内部点无关。如果内部点移动,则“阴影”不会改变。如果曲面变形导致“悬垂”,即一些投影点落在投影边界之外,例如右侧示例,则这些点会与悬垂对面(顶部或底部)的点抵消。上下颠倒的曲面投射负面积,在右侧示例中,所有负投影面积都被投影到悬垂顶部的直立曲面上的正面积抵消。
计算平面曲面投影到平面上的带符号投影面积等同于计算曲面向量投影到垂直于平面的直线上的带符号投影长度。
闭合曲面生成的总表面向量为 0 {\displaystyle \mathbf {0} } .
给定多曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} , S {\displaystyle \mathbf {S} } 生成的总表面向量为 ∑ i = 1 k w i ∬ q ∈ σ i d S {\displaystyle \sum _{i=1}^{k}w_{i}\iint _{\mathbf {q} \in \sigma _{i}}d\mathbf {S} } .
给定一个表示多表面的向量场 F {\displaystyle \mathbf {F} } , F {\displaystyle \mathbf {F} } 生成的总表面向量为 ∭ q ∈ R 3 F ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )dV} 。由于简单表面 σ {\displaystyle \sigma } 生成的表面向量为 ∬ q ∈ σ d S {\displaystyle \iint _{\mathbf {q} \in \sigma }d\mathbf {S} } ,因此 ∭ q ∈ R 3 δ 2 ( q ; σ ) d V = ∬ q ∈ σ d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )dV=\iint _{\mathbf {q} \in \sigma }d\mathbf {S} } 。一个重要的观察结果是,给定一个在 σ {\displaystyle \sigma } 上的表面积分,微分 d S {\displaystyle d\mathbf {S} } 在体积积分中等于 δ 2 ( q ; σ ) d V {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )dV} : ∬ q ∈ σ f ( q , d S ) = ∭ q ∈ R 3 f ( q , δ 2 ( q ; σ ) d V ) {\displaystyle \iint _{\mathbf {q} \in \sigma }f(\mathbf {q} ,d\mathbf {S} )=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{2}(\mathbf {q} ;\sigma )dV)} ,前提是函数 f {\displaystyle f} 对第二个参数是线性的。
考虑一个多卷的 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} ,其中 Ω 1 , Ω 2 , . . . , Ω k {\displaystyle \Omega _{1},\Omega _{2},...,\Omega _{k}} 的体积分别为 V 1 , V 2 , . . . , V k {\displaystyle V_{1},V_{2},...,V_{k}} ,那么 U {\displaystyle \mathbf {U} } 的总体积为 ∑ i = 1 k w i V i {\displaystyle \sum _{i=1}^{k}w_{i}V_{i}} 。每个体积 V i {\displaystyle V_{i}} 可以通过 V i = ∭ q ∈ Ω i d V = ∭ q ∈ R 3 δ 3 ( q ; Ω i ) d V {\displaystyle V_{i}=\iiint _{\mathbf {q} \in \Omega _{i}}dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega _{i})dV} 计算。 U {\displaystyle \mathbf {U} } 的总体积为 V = ∑ i = 1 k w i V i = ∑ i = 1 k w i ∭ q ∈ Ω i d V = ∑ i = 1 k w i ∭ q ∈ R 3 δ 3 ( q ; Ω i ) d V {\displaystyle V=\sum _{i=1}^{k}w_{i}V_{i}=\sum _{i=1}^{k}w_{i}\iiint _{\mathbf {q} \in \Omega _{i}}dV=\sum _{i=1}^{k}w_{i}\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega _{i})dV} = ∭ q ∈ R 3 ( ∑ i = 1 k w i δ 3 ( q ; Ω i ) ) d V = ∭ q ∈ R 3 δ 3 ( q ; U ) d V {\displaystyle =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\left(\sum _{i=1}^{k}w_{i}\delta _{3}(\mathbf {q} ;\Omega _{i})\right)dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\mathbf {U} )dV} .
如果一个多体积 U {\displaystyle \mathbf {U} } 可以用标量场 U {\displaystyle U} 表示,则 U {\displaystyle \mathbf {U} } 的体积是 ∭ q ∈ R 3 U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U(\mathbf {q} )dV} .
给定任意体积 Ω {\displaystyle \Omega } ,在 Ω {\displaystyle \Omega } 上的体积积分可以转换为在 R 3 {\displaystyle \mathbb {R} ^{3}} 上的体积积分,方法是将微分 d V {\displaystyle dV} 替换为 δ 3 ( q ; Ω ) d V {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )dV}
∭ q ∈ Ω f ( q , d V ) = ∭ q ∈ R 3 f ( q , δ 3 ( q ; Ω ) d V ) {\displaystyle \iiint _{\mathbf {q} \in \Omega }f(\mathbf {q} ,dV)=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{3}(\mathbf {q} ;\Omega )dV)} 假设 f {\displaystyle f} 对第二个参数是线性的。
由标量场 ρ 1 {\displaystyle \rho _{1}} 和 ρ 2 {\displaystyle \rho _{2}} 表示的两个多点的并集就是 ρ 1 + ρ 2 {\displaystyle \rho _{1}+\rho _{2}} ,对于两个多路径的并集、两个多表面的并集和两个多体积的并集也是如此。但是,两个不同类型的结构的并集,例如一个多点与一个多路径的并集,是被禁止的。
并集
结构
多点 ρ 2 {\displaystyle \rho _{2}}
多路径 J 2 {\displaystyle \mathbf {J} _{2}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多体积 U 2 {\displaystyle U_{2}}
多点 ρ 1 {\displaystyle \rho _{1}}
多点 ρ 1 + ρ 2 {\displaystyle \rho _{1}+\rho _{2}}
n/a
n/a
n/a
多路径 J 1 {\displaystyle \mathbf {J} _{1}}
n/a
多路径 J 1 + J 2 {\displaystyle \mathbf {J} _{1}+\mathbf {J} _{2}}
n/a
n/a
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
n/a
n/a
多表面 F 1 + F 2 {\displaystyle \mathbf {F} _{1}+\mathbf {F} _{2}}
n/a
多体积 U 1 {\displaystyle U_{1}}
n/a
n/a
n/a
多体积 U 1 + U 2 {\displaystyle U_{1}+U_{2}}
另一方面,交集则更为复杂,可能发生在不同类型的结构之间。
当一个点 q {\displaystyle \mathbf {q} } ,其权重为 w 1 {\displaystyle w_{1}} ,与一个权重为 w 2 {\displaystyle w_{2}} 的体积 Ω {\displaystyle \Omega } 相交,那么交集就是点 q {\displaystyle \mathbf {q} } ,其权重为 w 1 w 2 {\displaystyle w_{1}w_{2}} 。给定一个多点和一个多体积,交集是每个简单点与每个简单体积的成对交集的总和。下图给出了多点与多体积交集的一个例子。
左图显示了一个多点和一个多体积。右图显示了多点和多体积之间的交集,它本身就是一个多点。注意,与权重为 -1 的体积相交的点,其权重被翻转为负值。
给定一个标量场为 ρ {\displaystyle \rho } 的多点,和一个标量场为 U {\displaystyle U} 的多体积,那么交集是一个标量场为 ρ U {\displaystyle \rho U} 的多点。
多点 ρ {\displaystyle \rho } 与多体积 U {\displaystyle U} 之间的总交集为 ∭ q ∈ R 3 ρ ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )U(\mathbf {q} )dV} .
如果 ρ {\displaystyle \rho } 表示一个简单的点 q 0 {\displaystyle \mathbf {q} _{0}} ,则总交集为 ∭ q ∈ R 3 δ 0 ( q ; q 0 ) U ( q ) d V = U ( q 0 ) {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})U(\mathbf {q} )dV=U(\mathbf {q} _{0})} .
如果 U {\displaystyle U} 表示一个简单的体积 Ω {\displaystyle \Omega } ,则总交集为 ∭ q ∈ R 3 ρ ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω ρ ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\rho (\mathbf {q} )dV} .
当一条路径 C {\displaystyle C} 权重为 w 1 {\displaystyle w_{1}} 与一个权重为 w 2 {\displaystyle w_{2}} 的表面 σ {\displaystyle \sigma } 相交于点 q {\displaystyle \mathbf {q} } ,则交点为 q {\displaystyle \mathbf {q} } ,权重为 ± w 1 w 2 {\displaystyle \pm w_{1}w_{2}} 。当 C {\displaystyle C} 沿 σ {\displaystyle \sigma } 的方向穿过 σ {\displaystyle \sigma } 时,权重为 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 。当 C {\displaystyle C} 沿与 σ {\displaystyle \sigma } 相反的方向穿过 σ {\displaystyle \sigma } 时,权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 。给定多路径和多表面,交点是每条简单路径与每条简单表面之间的逐对交点的总和。下面的图片给出了多路径与多表面交点的示例。
二维图像显示多路径(深蓝色虚线曲线)与多表面(深红色实线曲线)的交点。正交点(红色圆圈)发生在路径沿优选方向与表面相交时。负交点(青绿色圆圈)发生在路径沿相反方向与表面相交时。交点实际上是一个多点。
三维图像显示简单路径(红色曲线)与简单表面(绿色表面,逆时针边界突出显示)的交点。正交点用红色“+”符号表示,负交点用蓝色“−”符号表示。
多路径(以蓝色管状显示)与多表面(以红色板层显示)之间的交点。向量 F 是通过蓝色管状的流动密度。向量 G 是红色板层中的表面密度。绿色平行四边形是交点体积的二维投影。随着角度 theta 的增大,交点变得更加稀疏,因此交点密度是 F 和 G 的点积。
在上面的图像的最右边,多路径用一个向量场表示,该向量场在蓝色管内值为 F {\displaystyle \mathbf {F} } ,在其他地方为 0 {\displaystyle \mathbf {0} } 。多曲面用一个向量场表示,该向量场在红色薄片中值为 G {\displaystyle \mathbf {G} } ,在其他地方为 0 {\displaystyle \mathbf {0} } 。蓝色管内的路径总权重为 | F | Δ A {\displaystyle |\mathbf {F} |\Delta A} 。红色薄片内的曲面总权重为 | G | Δ t {\displaystyle |\mathbf {G} |\Delta t} 。所有交点处的总权重为 ( | F | Δ A ) ( | G | Δ t ) = | F | | G | Δ A Δ t {\displaystyle (|\mathbf {F} |\Delta A)(|\mathbf {G} |\Delta t)=|\mathbf {F} ||\mathbf {G} |\Delta A\Delta t} 。交点均匀分布的体积为 Δ A Δ t / cos θ {\displaystyle \Delta A\Delta t/\cos \theta } 。交点密度为 | F | | G | Δ A Δ t Δ A Δ t / cos θ = | F | | G | cos θ = F ⋅ G {\displaystyle {\frac {|\mathbf {F} ||\mathbf {G} |\Delta A\Delta t}{\Delta A\Delta t/\cos \theta }}=|\mathbf {F} ||\mathbf {G} |\cos \theta =\mathbf {F} \cdot \mathbf {G} } 。
给定一个具有向量场 J {\displaystyle \mathbf {J} } 的多路径和一个具有向量场 F {\displaystyle \mathbf {F} } 的多曲面,则交点是一个具有标量场 J ⋅ F {\displaystyle \mathbf {J} \cdot \mathbf {F} } 的多点。
多路径 J {\displaystyle \mathbf {J} } 与多曲面 F {\displaystyle \mathbf {F} } 的总交集为 ∭ q ∈ R 3 ( J ( q ) ⋅ F ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} (\mathbf {q} )\cdot \mathbf {F} (\mathbf {q} ))dV} .
如果 J {\displaystyle \mathbf {J} } 是一个简单路径 C {\displaystyle C} ,则总交集为 ∭ q ∈ R 3 ( δ 1 ( q ; C ) ⋅ F ( q ) ) d V = ∫ q ∈ C F ( q ) ⋅ d q {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\delta _{1}(\mathbf {q} ;C)\cdot \mathbf {F} (\mathbf {q} ))dV=\int _{\mathbf {q} \in C}\mathbf {F} (\mathbf {q} )\cdot d\mathbf {q} } .
如果 F {\displaystyle \mathbf {F} } 是一个简单曲面 σ {\displaystyle \sigma } ,则总交集为 ∭ q ∈ R 3 ( J ( q ) ⋅ δ 2 ( q ; σ ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} (\mathbf {q} )\cdot \delta _{2}(\mathbf {q} ;\sigma ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } .
当一条带权重 w 1 {\displaystyle w_{1}} 的路径 C {\displaystyle C} 与带权重 w 2 {\displaystyle w_{2}} 的体积 Ω {\displaystyle \Omega } 相交,则交点为一条带权重 w 1 w 2 {\displaystyle w_{1}w_{2}} 的路径 C ∩ Ω {\displaystyle C\cap \Omega } 。给定多路径和多体积,它们的交点是每条简单路径与每个简单体积之间两两交点的总和。下图给出了一个多路径与多体积相交的例子。
左侧面板描绘了多路径和多体积。右侧面板描绘了多路径和多体积之间的交点,它本身也是一个多路径。请注意,路径的方向在负权重体积中反转。此外,位于中间权重为 2 的体积区域内的路径段的权重为 2,如较粗的线条所示。
给定一个具有矢量场 J {\displaystyle \mathbf {J} } 的多路径,以及一个具有标量场 U {\displaystyle U} 的多体积,则它们的交点为一个具有矢量场 J U {\displaystyle \mathbf {J} U} 的多路径。
多路径 J {\displaystyle \mathbf {J} } 与多体积 U {\displaystyle U} 之间的总交点为 ∭ q ∈ R 3 J ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )U(\mathbf {q} )dV} 。
如果 J {\displaystyle \mathbf {J} } 表示一条简单路径 C {\displaystyle C} ,则总交点为 ∭ q ∈ R 3 δ 1 ( q ; C ) U ( q ) d V = ∫ q ∈ C U ( q ) d q {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)U(\mathbf {q} )dV=\int _{\mathbf {q} \in C}U(\mathbf {q} )d\mathbf {q} } 。
如果 U {\displaystyle U} 表示一个简单的体积 Ω {\displaystyle \Omega } ,那么总交集是 ∭ q ∈ R 3 J ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω J ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\mathbf {J} (\mathbf {q} )dV} .
当一个曲面 σ 1 {\displaystyle \sigma _{1}} 权重为 w 1 {\displaystyle w_{1}} 与另一个曲面 σ 2 {\displaystyle \sigma _{2}} 相交,后者权重为 w 2 {\displaystyle w_{2}} ,那么交集是一个路径 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,权重为 w 1 w 2 {\displaystyle w_{1}w_{2}} 。路径 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 的方向定义如下:观察交集,其中 σ 1 {\displaystyle \sigma _{1}} 和 σ 2 {\displaystyle \sigma _{2}} 的曲面法向量都指向观察者,交集路径在 σ 1 {\displaystyle \sigma _{1}} 的右侧,在 σ 2 {\displaystyle \sigma _{2}} 的左侧。换句话说,交集路径的方向根据“右手规则”确定,其中 σ 1 {\displaystyle \sigma _{1}} 的曲面法向量是“x”方向, σ 2 {\displaystyle \sigma _{2}} 的曲面法向量是“y”方向。下面的图片展示了多曲面与多曲面交集的示例。
一张 3D 图像,展示了两个曲面的交集。曲面 1 是蓝色的,法向量朝上。曲面 2 是红色的,法向量朝右。交集是黑色的曲线。交集曲线的方向由右手规则确定,其中曲面 1 的曲面法向量是“x”方向,曲面 2 的曲面法向量是“y”方向。
两个多曲面的交集。第一个多曲面是蓝色的层叠板,第二个多曲面是红色的层叠板。向量 F 是蓝色板中的曲面密度。向量 G 是红色板中的曲面密度。绿色平行四边形是形成交集的棱柱体的 2D 横截面。随着角度 theta 与 90 度的偏离,交集路径变得更加稀疏,因此交集路径密度是 F 和 G 的叉积。在本例中,交集路径也指向屏幕外。
在上图右侧,第一个多曲面由一个向量场表示,该向量场在蓝色薄片中值为 F {\displaystyle \mathbf {F} } ,而在其他地方为 0 {\displaystyle \mathbf {0} } 。第二个多曲面由一个向量场表示,该向量场在红色薄片中值为 G {\displaystyle \mathbf {G} } ,而在其他地方为 0 {\displaystyle \mathbf {0} } 。蓝色薄片的总表面权重为 | F | Δ t 1 {\displaystyle |\mathbf {F} |\Delta t_{1}} ,红色薄片的总表面权重为 | G | Δ t 2 {\displaystyle |\mathbf {G} |\Delta t_{2}} 。所有交叉路径的总权重为 ( | F | Δ t 1 ) ( | G | Δ t 2 ) = | F | | G | Δ t 1 Δ t 2 {\displaystyle (|\mathbf {F} |\Delta t_{1})(|\mathbf {G} |\Delta t_{2})=|\mathbf {F} ||\mathbf {G} |\Delta t_{1}\Delta t_{2}} 。交叉路径均匀分布的横截面积为 Δ t 1 Δ t 2 / sin θ {\displaystyle \Delta t_{1}\Delta t_{2}/\sin \theta } 。交叉路径密度为 | F | | G | Δ t 1 Δ t 2 Δ t 1 Δ t 2 / sin θ = | F | | G | sin θ = | F × G | {\displaystyle {\frac {|\mathbf {F} ||\mathbf {G} |\Delta t_{1}\Delta t_{2}}{\Delta t_{1}\Delta t_{2}/\sin \theta }}=|\mathbf {F} ||\mathbf {G} |\sin \theta =|\mathbf {F} \times \mathbf {G} |} 。最后,需要注意的是,交叉路径根据右手定则指向屏幕外。
给定一个具有向量场 F 1 {\displaystyle \mathbf {F} _{1}} 的多曲面,以及一个具有向量场 F 2 {\displaystyle \mathbf {F} _{2}} 的多曲面,则它们的交点为具有向量场 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 的多路径。
多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和多曲面 F 2 {\displaystyle \mathbf {F} _{2}} 之间的总交集为 ∭ q ∈ R 3 ( F 1 ( q ) × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV} .
如果 F 2 {\displaystyle \mathbf {F} _{2}} 表示一个简单的曲面 σ {\displaystyle \sigma } ,则总交集为 ∭ q ∈ R 3 ( F 1 ( q ) × δ 2 ( q ; σ ) ) d V = ∬ q ∈ σ F 1 ( q ) × d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {F} _{1}(\mathbf {q} )\times \delta _{2}(\mathbf {q} ;\sigma ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {F} _{1}(\mathbf {q} )\times d\mathbf {S} } .
当一个权重为 w 1 {\displaystyle w_{1}} 的曲面 σ {\displaystyle \sigma } 与一个权重为 w 2 {\displaystyle w_{2}} 的体积 Ω {\displaystyle \Omega } 相交,则交集为权重为 w 1 w 2 {\displaystyle w_{1}w_{2}} 的曲面 σ ∩ Ω {\displaystyle \sigma \cap \Omega } 。给定一个多曲面和一个多体积,交集是每个简单曲面与每个简单体积的成对交集的总和。下图给出了多曲面与多体积交集的例子。
左图描绘了一个多曲面和一个多体积。右图描绘了多曲面和多体积之间的交集,它本身也是一个多曲面。注意,曲面在负权体积中的方向是反转的。此外,左上角权重为 2 的体积区域中的曲面段的权重为 2,如较粗的线所示。
给定一个具有向量场 F {\displaystyle \mathbf {F} } 的多曲面,以及一个具有标量场 U {\displaystyle U} 的多体积,则它们的交集是一个具有向量场 F U {\displaystyle \mathbf {F} U} 的多曲面。
多曲面 F {\displaystyle \mathbf {F} } 和多体积 U {\displaystyle U} 之间的总交集为 ∭ q ∈ R 3 F ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )U(\mathbf {q} )dV} 。
如果 F {\displaystyle \mathbf {F} } 表示一个简单曲面 σ {\displaystyle \sigma } ,则总交集为 ∭ q ∈ R 3 δ 2 ( q ; σ ) U ( q ) d V = ∬ q ∈ σ U ( q ) d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )U(\mathbf {q} )dV=\iint _{\mathbf {q} \in \sigma }U(\mathbf {q} )d\mathbf {S} } 。
如果 U {\displaystyle U} 表示一个简单体积 Ω {\displaystyle \Omega } ,则总交集为 ∭ q ∈ R 3 F ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω F ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\mathbf {F} (\mathbf {q} )dV} 。
当一个体积为 Ω 1 {\displaystyle \Omega _{1}} 的物体与一个体积为 Ω 2 {\displaystyle \Omega _{2}} 的物体相交时,其交集的体积为 Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} ,其权重为 w 1 w 2 {\displaystyle w_{1}w_{2}} 。对于两个多体积,其交集是第一个多体积中每个简单体积与第二个多体积中每个简单体积的成对交集的总和。下面的图片展示了两个多体积之间的交集示例。
左边的两个面板分别显示了一个多体积,最右边的面板显示了这两个多体积的交集。两个简单体积的交集的权重是这两个体积的权重的乘积。
给定一个具有标量场 U 1 {\displaystyle U_{1}} 的多体积,以及一个具有标量场 U 2 {\displaystyle U_{2}} 的多体积,则其交集是一个具有标量场 U 1 U 2 {\displaystyle U_{1}U_{2}} 的多体积。
多体积 U 1 {\displaystyle U_{1}} 和多体积 U 2 {\displaystyle U_{2}} 之间的总交集为 ∭ q ∈ R 3 U 1 ( q ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )U_{2}(\mathbf {q} )dV} .
如果 U 2 {\displaystyle U_{2}} 表示一个简单体积 Ω {\displaystyle \Omega } ,则总交集为 ∭ q ∈ R 3 U 1 ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω U 1 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }U_{1}(\mathbf {q} )dV} .
其他类型的交集,例如点-点交集、点-路径交集、点-表面交集和路径-路径交集,不被考虑,因为这些类型的交集只能通过设计发生。例如,两个随机选择的点相交的概率为 0,但如果随机选择一个点和一个体积,那么该点落在该体积内的概率是非零的。对于两个不相关的点,这两个点永远不会落在彼此之上,因为点要重合,必须存在先前的关系。以下是各种类型的交集的总结
交集
结构
多点 ρ 2 {\displaystyle \rho _{2}}
多路径 J 2 {\displaystyle \mathbf {J} _{2}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多体积 U 2 {\displaystyle U_{2}}
多点 ρ 1 {\displaystyle \rho _{1}}
n/a
n/a
n/a
多点 ρ 1 U 2 {\displaystyle \rho _{1}U_{2}}
多路径 J 1 {\displaystyle \mathbf {J} _{1}}
n/a
n/a
多点 J 1 ⋅ F 2 {\displaystyle \mathbf {J} _{1}\cdot \mathbf {F} _{2}}
多路径 J 1 U 2 {\displaystyle \mathbf {J} _{1}U_{2}}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
n/a
多点 F 1 ⋅ J 2 {\displaystyle \mathbf {F} _{1}\cdot \mathbf {J} _{2}}
多路径 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}}
多曲面 F 1 U 2 {\displaystyle \mathbf {F} _{1}U_{2}}
多体积 U 1 {\displaystyle U_{1}}
多点 U 1 ρ 2 {\displaystyle U_{1}\rho _{2}}
多路径 U 1 J 2 {\displaystyle U_{1}\mathbf {J} _{2}}
多曲面 U 1 F 2 {\displaystyle U_{1}\mathbf {F} _{2}}
多体积 U 1 U 2 {\displaystyle U_{1}U_{2}}
给定一条简单路径 C {\displaystyle C} ,它从点 C ( 0 ) {\displaystyle C(0)} 开始,到点 C ( 1 ) {\displaystyle C(1)} 结束, C {\displaystyle C} 的“端点”是多点 { ( C ( 0 ) , + 1 ) , ( C ( 1 ) , − 1 ) } {\displaystyle \{(C(0),+1),(C(1),-1)\}} ,它由权重为 +1 的起点和权重为 -1 的终点组成。当 C {\displaystyle C} 由矢量场 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} 表示时,其端点由标量场 δ 0 ( q ; C ( 0 ) ) − δ 0 ( q ; C ( 1 ) ) {\displaystyle \delta _{0}(\mathbf {q} ;C(0))-\delta _{0}(\mathbf {q} ;C(1))} 表示。下面的图像给出了一些简单路径及其关联端点的示例。
一系列面板,每个面板描绘了一条定向路径及其端点。路径的端点由起始点处的正权重点和结束点处的负权重点组成。
给定一条多路径 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} , C {\displaystyle \mathbf {C} } 的端点是多点 { ( C 1 ( 0 ) , + 1 ) , ( C 1 ( 1 ) , − 1 ) , ( C 2 ( 0 ) , + 1 ) , ( C 2 ( 1 ) , − 1 ) , . . . , ( C k ( 0 ) , + 1 ) , ( C k ( 1 ) , − 1 ) } {\displaystyle \{(C_{1}(0),+1),(C_{1}(1),-1),(C_{2}(0),+1),(C_{2}(1),-1),...,(C_{k}(0),+1),(C_{k}(1),-1)\}} .
给定一个表示多路径的向量场 J {\displaystyle \mathbf {J} } ,表示该向量场终点的多点由标量场 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 表示。 在点 q {\displaystyle \mathbf {q} } 处计算标量场 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 的值用 ∇ ⋅ J ( q ) {\displaystyle \nabla \cdot \mathbf {J} (\mathbf {q} )} , ( ∇ ⋅ J ) ( q ) {\displaystyle (\nabla \cdot \mathbf {J} )(\mathbf {q} )} 或 ∇ ⋅ J | q {\displaystyle \nabla \cdot \mathbf {J} |_{\mathbf {q} }} 表示。
没有路径延伸到无穷远的要求意味着每个起点都与一个终点配对,因此所有终点的总权重为0: ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=0} .
路径的终点是路径与“现实表面”的交点。
符号 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 与多路径 J {\displaystyle \mathbf {J} } 与多表面 F {\displaystyle \mathbf {F} } 的交点,用 F ⋅ J {\displaystyle \mathbf {F} \cdot \mathbf {J} } 表示,是有道理的,如果我们将 ∇ {\displaystyle \nabla } 解释为“现实表面”。一个起点形成于一条路径戳入现实时,而一个终点形成于一条路径从现实中戳出时。
在右边的图像中,展示了对 ∇ {\displaystyle \nabla } 的“现实表面”解释的描述。右边是一条简单的路径 F {\displaystyle \mathbf {F} } ,以及它的端点 ∇ ⋅ F {\displaystyle \nabla \cdot \mathbf {F} } 。左边 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 是 F {\displaystyle \mathbf {F} } 的一个延伸,它位于表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面纱”后面。 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 从 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 中伸出来,并与 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 相交,这些交点与 F {\displaystyle \mathbf {F} } 的端点一致,即 G ∇ ⋅ F ext = ∇ ⋅ F {\displaystyle \mathbf {G} _{\nabla }\cdot \mathbf {F} _{\text{ext}}=\nabla \cdot \mathbf {F} } 。
给定一个定向表面 σ {\displaystyle \sigma } , σ {\displaystyle \sigma } 的“逆时针方向边界”是一条路径 ∂ σ {\displaystyle \partial \sigma } ,它以逆时针方向跟踪 σ {\displaystyle \sigma } 的边界。逆时针方向的描述如下:当位于边界上时,逆时针方向是表面法向量指向“上”而表面本身位于“左”时的“前进”方向。下图给出了几个定向表面及其逆时针边界的示例。特别注意第四个面板,它表明表面孔周围的方向似乎是顺时针方向。
一系列面板,每个面板都描绘了一个定向表面及其逆时针方向边界。表面法向量由红色箭头表示。
给定一个多曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} , S {\displaystyle \mathbf {S} } 的逆时针边界是多路径 { ( ∂ σ 1 , w 1 ) , ( ∂ σ 2 , w 2 ) , . . . , ( ∂ σ k , w k ) } {\displaystyle \{(\partial \sigma _{1},w_{1}),(\partial \sigma _{2},w_{2}),...,(\partial \sigma _{k},w_{k})\}} .
给定一个向量场 F {\displaystyle \mathbf {F} } ,它表示一个多曲面,表示 F {\displaystyle \mathbf {F} } 逆时针边界的那个多路径,用向量场 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 表示。在点 q {\displaystyle \mathbf {q} } 处对向量场 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 的求值用 ∇ × F ( q ) {\displaystyle \nabla \times \mathbf {F} (\mathbf {q} )} , ( ∇ × F ) ( q ) {\displaystyle (\nabla \times \mathbf {F} )(\mathbf {q} )} 或者 ∇ × F | q {\displaystyle \nabla \times \mathbf {F} |_{\mathbf {q} }} 表示。
要求表面权重不能无限延伸意味着所有逆时针边界形成闭合回路,因此总逆时针边界的总位移为 0 {\displaystyle \mathbf {0} } : ∭ q ∈ R 3 ( ∇ × F ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))dV=\mathbf {0} } .
还需要注意的是,逆时针边界没有端点: ∇ ⋅ ( ∇ × F ) = 0 {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0} .
表面的边界类似于表面与“现实表面”的交点。
符号 ∇ × F 2 {\displaystyle \nabla \times \mathbf {F} _{2}} 与多表面 F 1 {\displaystyle \mathbf {F} _{1}} 与多表面 F 2 {\displaystyle \mathbf {F} _{2}} 的交点相似,用 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 表示,如果将 ∇ {\displaystyle \nabla } 解释为“现实表面”,那么这种理解仍然是有意义的。当一个表面“切入”现实时,就会形成一条边。
右边的图像展示了 ∇ {\displaystyle \nabla } “现实表面”的解释。右边是一个简单的表面 F {\displaystyle \mathbf {F} } ,以及它的逆时针边界 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 。左边 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 是 F {\displaystyle \mathbf {F} } 的延伸,位于表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面纱”之后。 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 在与 F {\displaystyle \mathbf {F} } 边界一致的曲线处切入 G ∇ {\displaystyle \mathbf {G} _{\nabla }} :即 G ∇ × F ext = ∇ × F {\displaystyle \mathbf {G} _{\nabla }\times \mathbf {F} _{\text{ext}}=\nabla \times \mathbf {F} } 。
给定一个体积 Ω {\displaystyle \Omega } , Ω {\displaystyle \Omega } 的“向内方向表面”是一个表面 ∂ Ω {\displaystyle \partial \Omega } ,它用表面法线指向内部包裹体积 Ω {\displaystyle \Omega } 。下面的图片给出了一些体积及其向内方向表面的例子。
一系列面板,每个面板都描绘了一个体积及其向内方向表面。表面的向内方向由指向内部的红色箭头表示。
给定一个多体积 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} , U {\displaystyle \mathbf {U} } 的内向表面是多表面 { ( ∂ Ω 1 , w 1 ) , ( ∂ Ω 2 , w 2 ) , . . . , ( ∂ Ω k , w k ) } {\displaystyle \{(\partial \Omega _{1},w_{1}),(\partial \Omega _{2},w_{2}),...,(\partial \Omega _{k},w_{k})\}} 。
给定一个标量场 U {\displaystyle U} ,它表示多体积,则表示 U {\displaystyle U} 内向表面的多表面由向量场 ∇ U {\displaystyle \nabla U} 表示。向量场 ∇ U {\displaystyle \nabla U} 在点 q {\displaystyle \mathbf {q} } 处的取值表示为 ∇ U ( q ) {\displaystyle \nabla U(\mathbf {q} )} , ( ∇ U ) ( q ) {\displaystyle (\nabla U)(\mathbf {q} )} ,或 ∇ U | q {\displaystyle \nabla U|_{\mathbf {q} }} 。
没有体积权重延伸到无穷大的要求意味着所有内向表面形成闭合表面,因此总内向表面的总表面向量为 0 {\displaystyle \mathbf {0} } : ∭ q ∈ R 3 ( ∇ U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U(\mathbf {q} ))dV=\mathbf {0} } 。
同样重要的是要注意,内向表面没有边界: ∇ × ( ∇ U ) = 0 {\displaystyle \nabla \times (\nabla U)=\mathbf {0} } 。
在这个二维横截面中,体积的表面类似于体积与“现实表面”的交集。
符号 ∇ U {\displaystyle \nabla U} 与多重曲面 F {\displaystyle \mathbf {F} } 与多重体积 U {\displaystyle U} 的交集的相似性,用 F U {\displaystyle \mathbf {F} U} 表示,如果将 ∇ {\displaystyle \nabla } 解释为“现实的表面”,再次是有意义的。当体积“推动”进入现实时,就会从现实的表面形成一个表面。
在右侧的图像中,显示了 ∇ {\displaystyle \nabla } 的“现实的表面”解释的描述。为了简单起见,该图像是一个二维横截面。右侧是一个简单的体积 U {\displaystyle U} ,以及它的内向表面 ∇ U {\displaystyle \nabla U} 。左侧 U ext {\displaystyle U_{\text{ext}}} 是 U {\displaystyle U} 的延伸,它位于表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面纱”之后。 U ext {\displaystyle U_{\text{ext}}} 以与 U {\displaystyle U} 的表面一致的表面穿过 G ∇ {\displaystyle \mathbf {G} _{\nabla }} :即 G ∇ U ext = ∇ U {\displaystyle \mathbf {G} _{\nabla }U_{\text{ext}}=\nabla U} 。
如果简单路径的起点和终点相同,则该路径为“闭合”或“回路”,因此由于起点和终点的权重抵消,总端点为 0。更一般地说,如果 ∇ ⋅ J = 0 {\displaystyle \nabla \cdot \mathbf {J} =0} ,则多重路径 J {\displaystyle \mathbf {J} } 为“闭合”或“多重回路”。如前所述,曲面的逆时针边界是闭合的。
如果简单曲面没有边界,则该曲面为“闭合”或“气泡”。更一般地说,如果 ∇ × F = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} } ,则多重曲面 F {\displaystyle \mathbf {F} } 为“闭合”或“多重气泡”。如前所述,体积的内向表面是闭合的。
很明显,在一个封闭的多路径中存在的总位移是 0 {\displaystyle \mathbf {0} } : ∇ ⋅ J = 0 ⟹ ∭ q ∈ R 3 J d V = 0 {\displaystyle \nabla \cdot \mathbf {J} =0\implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} dV=\mathbf {0} } ,并且很明显,一个封闭多曲面的总表面矢量也是 0 {\displaystyle \mathbf {0} } : ∇ × F = 0 ⟹ ∭ q ∈ R 3 F d V = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} \implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} dV=\mathbf {0} } 。
给定一个简单循环和一个简单气泡,循环进入气泡的次数等于循环离开气泡的次数。
给定一个简单循环和一个简单气泡,所有交点的总点权为 0:循环每次进入气泡,就必须离开气泡,这两个交点的权重相互抵消。更一般地,给定一个封闭的多路径 J {\displaystyle \mathbf {J} } 和一个封闭的多曲面 F {\displaystyle \mathbf {F} } ,则总交点权重为 0: ( ∇ ⋅ J = 0 and ∇ × F = 0 ) ⟹ ∭ q ∈ R 3 ( J ⋅ F ) d V = 0 {\displaystyle (\nabla \cdot \mathbf {J} =0\;{\text{and}}\;\nabla \times \mathbf {F} =\mathbf {0} )\implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} )dV=0} 。
上述恒等式导致以下观察结果
多循环和多曲面的总交点权重纯粹是多循环和多曲面的逆时针边界函数:多曲面的内部无关紧要。如果 ∇ ⋅ J = 0 {\displaystyle \nabla \cdot \mathbf {J} =0} 和 ∇ × F 1 = ∇ × F 2 {\displaystyle \nabla \times \mathbf {F} _{1}=\nabla \times \mathbf {F} _{2}} ,则 ∭ q ∈ R 3 ( J ⋅ F 1 ) d V = ∭ q ∈ R 3 ( J ⋅ F 2 ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} _{1})dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} _{2})dV} 。
多路径和多泡的总交点权重纯粹是多泡和多路径的端点的函数:多路径的内部无关紧要。如果 ∇ × F = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} } 并且 ∇ ⋅ J 1 = ∇ ⋅ J 2 {\displaystyle \nabla \cdot \mathbf {J} _{1}=\nabla \cdot \mathbf {J} _{2}} ,那么 ∭ q ∈ R 3 ( J 1 ⋅ F ) d V = ∭ q ∈ R 3 ( J 2 ⋅ F ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} _{1}\cdot \mathbf {F} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} _{2}\cdot \mathbf {F} )dV} 。
体积的内向表面是闭合的。相反,给定一个闭合表面,存在一个“填充”该表面的体积。更一般地,给定一个多泡 F {\displaystyle \mathbf {F} } ,存在一个多体积 U {\displaystyle U} ,其中 F {\displaystyle \mathbf {F} } 是 U {\displaystyle U} 的内向多表面: ∇ × F = 0 ⟹ ∃ U : ∇ U = F {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} \implies \exists U:\nabla U=\mathbf {F} } 。这个多体积被称为 F {\displaystyle \mathbf {F} } 的“标量势”。体积不能延伸到无穷大的要求意味着 U {\displaystyle U} 是唯一的。
表面的逆时针方向边界是闭合的。相反,给定一个循环,存在一个“填充”该循环的表面。更一般地,给定一个多循环 J {\displaystyle \mathbf {J} } ,存在一个多表面 F {\displaystyle \mathbf {F} } ,其中 J {\displaystyle \mathbf {J} } 是 F {\displaystyle \mathbf {F} } 的逆时针方向边界: ∇ ⋅ J = 0 ⟹ ∃ F : ∇ × F = J {\displaystyle \nabla \cdot \mathbf {J} =0\implies \exists \mathbf {F} :\nabla \times \mathbf {F} =\mathbf {J} } 。这个多表面被称为 J {\displaystyle \mathbf {J} } 的“矢量势”。即使有表面不能延伸到无穷大的要求, F {\displaystyle \mathbf {F} } 不是 唯一的,除非有额外的限制。
此图像描绘了顶部的广义坐标格。图像底部是单个体积元素,其中包含基础位移(逆变)向量,以及基础曲面(协变)向量。
本节将描述如何在给定曲线坐标系的情况下计算各种量,例如交点、端点、边界和曲面。
设曲线坐标系为任意。设索引所有点的 3 个坐标为 c 1 , c 2 , c 3 {\displaystyle c_{1},c_{2},c_{3}} 。坐标将用三元组 ( c 1 , c 2 , c 3 ) {\displaystyle (c_{1},c_{2},c_{3})} 表示。
在下文中,将使用以下符号:
给定任意表达式 f : { 1 , 2 , 3 } → R {\displaystyle f:\{1,2,3\}\to \mathbb {R} } ,它将一个实数分配给每个索引 i = 1 , 2 , 3 {\displaystyle i=1,2,3} ,则 ( i ; f ( i ) ) {\displaystyle (i;f(i))} 将表示三元组 ( f ( 1 ) , f ( 2 ) , f ( 3 ) ) {\displaystyle (f(1),f(2),f(3))} 。
给定索引变量 i , j ∈ { 1 , 2 , 3 } {\displaystyle i,j\in \{1,2,3\}} ,表达式 1 ( i = j ) {\displaystyle \mathbf {1} (i=j)} 当 i = j {\displaystyle i=j} 时等于 1,否则等于 0。
给定任意表达式 f : { 1 , 2 , 3 } → R {\displaystyle f:\{1,2,3\}\to \mathbb {R} } ,它将一个实数分配给每个索引 i = 1 , 2 , 3 {\displaystyle i=1,2,3} ,则 ∑ i f ( i ) {\displaystyle \sum _{i}f(i)} 将表示和 f ( 1 ) + f ( 2 ) + f ( 3 ) {\displaystyle f(1)+f(2)+f(3)} 。
给定一个索引变量 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , i + 1 {\displaystyle i+1} 将使 i {\displaystyle i} 向前旋转 1 位,而 i + 2 {\displaystyle i+2} 将使 i {\displaystyle i} 向前旋转 2 位。本质上, i + 1 = { i + 1 ( i = 1 , 2 ) 1 ( i = 3 ) {\displaystyle i+1=\left\{{\begin{array}{cc}i+1&(i=1,2)\\1&(i=3)\end{array}}\right.} 以及 i + 2 = { 3 ( i = 1 ) i − 1 ( i = 2 , 3 ) {\displaystyle i+2=\left\{{\begin{array}{cc}3&(i=1)\\i-1&(i=2,3)\end{array}}\right.} .
从任意坐标 ( c 1 ′ , c 2 ′ , c 3 ′ ) = ( j ; c j ′ ) {\displaystyle (c'_{1},c'_{2},c'_{3})=(j;c'_{j})} 开始,并引入无穷小差值 Δ c 1 {\displaystyle \Delta c_{1}} , Δ c 2 {\displaystyle \Delta c_{2}} ,以及 Δ c 3 {\displaystyle \Delta c_{3}} 。以下 3 条路径、3 个曲面和体积将与点 ( j ; c j ′ ) {\displaystyle (j;c'_{j})} 相关联
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} there exists an infinitely short path C i ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c'_{j}))} starting from point ( j ; c j ′ ) {\displaystyle (j;c'_{j})} and ending on point ( j ; c j ′ + Δ c i 1 ( j = i ) ) {\displaystyle (j;c'_{j}+\Delta c_{i}\mathbf {1} (j=i))} along the curve defined by c i ′ ≤ c i < c i ′ + Δ c i {\displaystyle c'_{i}\leq c_{i}<c'_{i}+\Delta c_{i}} , c i + 1 = c i + 1 ′ {\displaystyle c_{i+1}=c'_{i+1}} and c i + 2 = c i + 2 ′ {\displaystyle c_{i+2}=c'_{i+2}} . The displacement covered by C i ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c'_{j}))} is approximately Δ c i ⋅ l i ( ( j ; c j ′ ) ) ⋅ a ^ i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i}\cdot l_{i}((j;c'_{j}))\cdot {\hat {\mathbf {a} }}_{i}((j;c'_{j}))} where a ^ i ( ( j ; c j ′ ) ) {\displaystyle {\hat {\mathbf {a} }}_{i}((j;c'_{j}))} is a unit length vector that is parallel to the displacement between points ( j ; c j ′ ) {\displaystyle (j;c'_{j})} and ( j ; c j ′ + Δ c i 1 ( j = i ) ) {\displaystyle (j;c'_{j}+\Delta c_{i}\mathbf {1} (j=i))} , and Δ c i ⋅ l i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i}\cdot l_{i}((j;c'_{j}))} is the length of the displacement. Note that the length of the displacement is proportional to Δ c i {\displaystyle \Delta c_{i}} , with l i ( ( j ; c j ′ ) ) {\displaystyle l_{i}((j;c'_{j}))} being the constant of proportionality. The set of vectors { a ^ 1 ( ( j ; c j ′ ) ) , a ^ 2 ( ( j ; c j ′ ) ) , a ^ 3 ( ( j ; c j ′ ) ) } {\displaystyle \{{\hat {\mathbf {a} }}_{1}((j;c'_{j})),{\hat {\mathbf {a} }}_{2}((j;c'_{j})),{\hat {\mathbf {a} }}_{3}((j;c'_{j}))\}} is the set of displacement basis vectors .
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} there exists an infinitely small surface σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} that is defined by the following: c i = c i ′ {\displaystyle c_{i}=c'_{i}} , c i + 1 ′ ≤ c i + 1 < c i + 1 ′ + Δ c i + 1 {\displaystyle c'_{i+1}\leq c_{i+1}<c'_{i+1}+\Delta c_{i+1}} , and c i + 2 ′ ≤ c i + 2 < c i + 2 ′ + Δ c i + 2 {\displaystyle c'_{i+2}\leq c_{i+2}<c'_{i+2}+\Delta c_{i+2}} . The orientation of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is in the direction of increasing c i {\displaystyle c_{i}} . The surface vector of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is approximately Δ c i + 1 Δ c i + 2 ⋅ A i ( ( j ; c j ′ ) ) ⋅ a ^ i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}((j;c'_{j}))\cdot {\hat {\mathbf {a} }}^{i}((j;c'_{j}))} where a ^ i ( ( j ; c j ′ ) ) {\displaystyle {\hat {\mathbf {a} }}^{i}((j;c'_{j}))} is a unit length vector that is perpendicular to σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} , and Δ c i + 1 Δ c i + 2 ⋅ A i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}((j;c'_{j}))} is the area of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} . Note that the area of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is proportional to Δ c i + 1 Δ c i + 2 {\displaystyle \Delta c_{i+1}\Delta c_{i+2}} , with A i ( ( j ; c j ′ ) ) {\displaystyle A_{i}((j;c'_{j}))} being the constant of proportionality. The set of vectors { a ^ 1 ( ( j ; c j ′ ) ) , a ^ 2 ( ( j ; c j ′ ) ) , a ^ 3 ( ( j ; c j ′ ) ) } {\displaystyle \{{\hat {\mathbf {a} }}^{1}((j;c'_{j})),{\hat {\mathbf {a} }}^{2}((j;c'_{j})),{\hat {\mathbf {a} }}^{3}((j;c'_{j}))\}} is the set of surface basis vectors .
存在一个无限小的体积 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} ,由 c 1 ′ ≤ c 1 < c 1 ′ + Δ c 1 {\displaystyle c'_{1}\leq c_{1}<c'_{1}+\Delta c_{1}} , c 2 ′ ≤ c 2 < c 2 ′ + Δ c 2 {\displaystyle c'_{2}\leq c_{2}<c'_{2}+\Delta c_{2}} 和 c 3 ′ ≤ c 3 < c 3 ′ + Δ c 3 {\displaystyle c'_{3}\leq c_{3}<c'_{3}+\Delta c_{3}} 定义。 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的形状近似于一个平行六面体。 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的体积近似于 Δ c 1 Δ c 2 Δ c 3 ⋅ V ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V((j;c'_{j}))} 。请注意, Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的体积与 Δ c 1 Δ c 2 Δ c 3 {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}} 成正比,其中 V ( ( j ; c j ′ ) ) {\displaystyle V((j;c'_{j}))} 是比例常数。
需要注意的是
( i ; c i ) ∈ Ω ( ( j ; c j ′ ) ) {\displaystyle (i;c_{i})\in \Omega ((j;c'_{j}))} 当且仅当 c 1 ′ ≤ c 1 < c 1 ′ + Δ c 1 {\displaystyle c'_{1}\leq c_{1}<c'_{1}+\Delta c_{1}} , c 2 ′ ≤ c 2 < c 2 ′ + Δ c 2 {\displaystyle c'_{2}\leq c_{2}<c'_{2}+\Delta c_{2}} 和 c 3 ′ ≤ c 3 < c 3 ′ + Δ c 3 {\displaystyle c'_{3}\leq c_{3}<c'_{3}+\Delta c_{3}} (注意上限的严格性)。
对于所有 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , C i ( ( j ; c j ) ) ⊆ Ω ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c_{j}))\subseteq \Omega ((j;c'_{j}))} 当且仅当 c i = c i ′ {\displaystyle c_{i}=c'_{i}} , c i + 1 ′ ≤ c i + 1 < c i + 1 ′ + Δ c i + 1 {\displaystyle c'_{i+1}\leq c_{i+1}<c'_{i+1}+\Delta c_{i+1}} 以及 c i + 2 ′ ≤ c i + 2 < c i + 2 ′ + Δ c i + 2 {\displaystyle c'_{i+2}\leq c_{i+2}<c'_{i+2}+\Delta c_{i+2}} (注意上限的严格性)。
对于所有 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , σ i ( ( j ; c j ) ) ⊆ Ω ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c_{j}))\subseteq \Omega ((j;c'_{j}))} 当且仅当 c i ′ ≤ c i < c i ′ + Δ c i {\displaystyle c'_{i}\leq c_{i}<c'_{i}+\Delta c_{i}} (注意上限的严格性), c i + 1 = c i + 1 ′ {\displaystyle c_{i+1}=c'_{i+1}} 以及 c i + 2 = c i + 2 ′ {\displaystyle c_{i+2}=c'_{i+2}} .
多点、多路径、多曲面和多体及其各自的标量场和矢量场之间的转换如下所示
This conversion is performed by subdividing space into discrete volumes or cells. Infinitesimal differences Δ c 1 {\displaystyle \Delta c_{1}} , Δ c 2 {\displaystyle \Delta c_{2}} , and Δ c 3 {\displaystyle \Delta c_{3}} are chosen, and a lattice consisting of the points ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} where ( j ; k j ) {\displaystyle (j;k_{j})} is an arbitrary triple of integers is generated. The cell indexed by ( j ; k j ) {\displaystyle (j;k_{j})} consists of the point ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} , the paths C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , the surfaces σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , and the volume Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} . All points ( j ; c j ) {\displaystyle (j;c_{j})} where k i Δ c i ≤ c i < ( k i + 1 ) Δ c i {\displaystyle k_{i}\Delta c_{i}\leq c_{i}<(k_{i}+1)\Delta c_{i}} for all i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} "belong" to the cell indexed by ( j ; k j ) {\displaystyle (j;k_{j})} (note that the upper bounds are excluded). Given an arbitrary point ( j ; c j ) {\displaystyle (j;c_{j})} , the cell that contains ( j ; c j ) {\displaystyle (j;c_{j})} is indexed by ( j ; k j ) = ( j ; ⌊ c j Δ c j ⌋ ) {\displaystyle (j;k_{j})=\left(j;\left\lfloor {\frac {c_{j}}{\Delta c_{j}}}\right\rfloor \right)} . The point ( j ; c j ′ ) = ( j ; k j Δ c j ) {\displaystyle (j;c'_{j})=(j;k_{j}\Delta c_{j})} is the vertex that the cell is associated with.
通过计算每个像元包含的总点权重、位移、曲面向量或体积,然后对像元的体积进行平均,将多点、多路径、多曲面或多体转换为标量场或矢量场。
将标量场 ρ {\displaystyle \rho } 转换为多点,对于每个像元 ( j ; k j ) {\displaystyle (j;k_{j})} 执行以下操作。首先计算像元内包含的总点权重: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) ρ ( q ) d V ≈ ρ ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\rho (\mathbf {q} )dV\approx \rho ((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} 。接下来将此权重分配给点 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} .
A vector-field J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} is converted to a multi-path by doing the following for each cell ( j ; k j ) {\displaystyle (j;k_{j})} . First compute the total displacement contained inside the cell: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) J ( q ) d V ≈ ( ∑ i J i ( ( j ; k j Δ c j ) ) a ^ i ( ( j ; k j Δ c j ) ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\mathbf {J} (\mathbf {q} )dV\approx \left(\sum _{i}J_{i}((j;k_{j}\Delta c_{j})){\hat {\mathbf {a} }}_{i}((j;k_{j}\Delta c_{j}))\right)V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next separate this total displacement into components according to the basis a ^ 1 {\displaystyle {\hat {\mathbf {a} }}_{1}} , a ^ 2 {\displaystyle {\hat {\mathbf {a} }}_{2}} , and a ^ 3 {\displaystyle {\hat {\mathbf {a} }}_{3}} : for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} is ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) J i ( q ) d V ≈ J i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}J_{i}(\mathbf {q} )dV\approx J_{i}((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , divide the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} by the length of C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} , which results in approximately J i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) l i ( ( j ; k j Δ c j ) ) Δ c i + 1 Δ c i + 2 {\displaystyle J_{i}((j;k_{j}\Delta c_{j})){\frac {V((j;k_{j}\Delta c_{j}))}{l_{i}((j;k_{j}\Delta c_{j}))}}\Delta c_{i+1}\Delta c_{i+2}} , and assign this weight to C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} .
A vector-field F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} is converted to a multi-surface by doing the following for each cell ( j ; k j ) {\displaystyle (j;k_{j})} . First compute the total surface vector contained inside the cell: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) F ( q ) d V ≈ ( ∑ i F i ( ( j ; k j Δ c j ) ) a ^ i ( ( j ; k j Δ c j ) ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\mathbf {F} (\mathbf {q} )dV\approx \left(\sum _{i}F_{i}((j;k_{j}\Delta c_{j})){\hat {\mathbf {a} }}^{i}((j;k_{j}\Delta c_{j}))\right)V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next separate this total surface vector into components according to the basis a ^ 1 {\displaystyle {\hat {\mathbf {a} }}^{1}} , a ^ 2 {\displaystyle {\hat {\mathbf {a} }}^{2}} , and a ^ 3 {\displaystyle {\hat {\mathbf {a} }}^{3}} : for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} is ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) F i ( q ) d V ≈ F i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}F_{i}(\mathbf {q} )dV\approx F_{i}((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , divide the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} by the area of σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} , which results in approximately F i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) A i ( ( j ; k j Δ c j ) ) Δ c i {\displaystyle F_{i}((j;k_{j}\Delta c_{j})){\frac {V((j;k_{j}\Delta c_{j}))}{A_{i}((j;k_{j}\Delta c_{j}))}}\Delta c_{i}} , and assign this weight to σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} .
将标量场 U {\displaystyle U} 转换为多体积,方法是针对每个单元格 ( j ; k j ) {\displaystyle (j;k_{j})} 执行以下步骤。首先计算单元格内部的总体积: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) U ( q ) d V ≈ U ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}U(\mathbf {q} )dV\approx U((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} 。接下来将此权重除以 Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} 的体积,这将近似于 U ( ( j ; k j Δ c j ) ) {\displaystyle U((j;k_{j}\Delta c_{j}))} ,并将此权重分配给 Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} 。
计算任何结构与多体积的交集是件简单的事:只需将向量场的标量乘以表示多体积的标量场即可。然而,当两个结构都由向量场表示时,计算交集就变得不那么简单了。
为了节省空间,将省略各种术语中的 ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 。
给定一个多路径 C {\displaystyle \mathbf {C} } ,用向量场 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 表示,以及一个多表面 S {\displaystyle \mathbf {S} } ,用向量场 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 表示,表示交点的标量场可以按如下方式计算
以下计算适用于每个单元格
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配给 C i {\displaystyle C_{i}} 的权重由 C {\displaystyle \mathbf {C} } 计算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}} 是当前单元格包含的总位移的 a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} 分量。计算分配给 C i {\displaystyle C_{i}} 的权重要求此位移分布在 C i {\displaystyle C_{i}} 的长度上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i Δ c i ⋅ l i = V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}}{\Delta c_{i}\cdot l_{i}}}={\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} .
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , S {\displaystyle \mathbf {S} } 分配给 σ i {\displaystyle \sigma _{i}} 的权重计算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是当前单元格包含的总表面矢量的 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 分量。计算分配给 σ i {\displaystyle \sigma _{i}} 的权重需要将此表面矢量分布在 σ i {\displaystyle \sigma _{i}} 的面积上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。
C i {\displaystyle C_{i}} 和 σ i {\displaystyle \sigma _{i}} 之间的交点是当前的晶格点,其权重为 ( V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ) ( V A i ⋅ Δ c i ⋅ F i ) {\displaystyle \left({\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right)\left({\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}\right)} = V 2 l i A i ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ J i F i {\displaystyle ={\frac {V^{2}}{l_{i}A_{i}}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot J_{i}F_{i}} 。
除了每个单元格中 C i {\displaystyle C_{i}} 和 σ i {\displaystyle \sigma _{i}} 之间的交集,以及 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,不会出现其他交集。当前单元格顶点处交集的总权重为 ∑ i V 2 l i A i ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ J i F i {\displaystyle \sum _{i}{\frac {V^{2}}{l_{i}A_{i}}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot J_{i}F_{i}} = V 2 ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i 1 l i A i ⋅ J i F i {\displaystyle =V^{2}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} .
当前单元格处 J ⋅ F {\displaystyle \mathbf {J} \cdot \mathbf {F} } 的值近似为 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ V 2 ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i 1 l i A i ⋅ J i F i {\displaystyle {\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot V^{2}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} = V ∑ i 1 l i A i ⋅ J i F i {\displaystyle =V\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} 。系数 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V {\displaystyle {\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}} 用于将点权重分散到当前单元格。
因此 J ⋅ F = V ∑ i 1 l i A i ⋅ J i F i {\displaystyle \mathbf {J} \cdot \mathbf {F} =V\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} 。请注意, J {\displaystyle \mathbf {J} } 使用位移基向量表示,而 F {\displaystyle \mathbf {F} } 使用表面基向量表示。
为了节省空间,将省略各种术语中的 ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 。
给定一个由向量场 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 表示的多曲面 S 1 {\displaystyle \mathbf {S} _{1}} ,以及由向量场 G = ∑ i G i a ^ i {\displaystyle \mathbf {G} =\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}} 表示的多曲面 S 2 {\displaystyle \mathbf {S} _{2}} ,可以根据以下步骤计算表示其交点的向量场。
以下计算适用于每个单元格
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配给 σ i {\displaystyle \sigma _{i}} 的 S 1 {\displaystyle \mathbf {S} _{1}} 的权重,可根据以下计算: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是当前单元包含的总表面向量在 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 方向上的分量。计算分配给 σ i {\displaystyle \sigma _{i}} 的权重,需要将该表面向量分散到 σ i {\displaystyle \sigma _{i}} 的面积上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。类似地,分配给 σ i {\displaystyle \sigma _{i}} 的 S 2 {\displaystyle \mathbf {S} _{2}} 的权重为 V A i ⋅ Δ c i ⋅ G i {\displaystyle {\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot G_{i}} 。
σ i + 1 {\displaystyle \sigma _{i+1}} 和 σ i + 2 {\displaystyle \sigma _{i+2}} 之间的交点是路径 C i {\displaystyle C_{i}} ,权重为 ( V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ) ( V A i + 2 ⋅ Δ c i + 2 ⋅ G i + 2 ) {\displaystyle \left({\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right)\left({\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot G_{i+2}\right)} = V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ F i + 1 G i + 2 {\displaystyle ={\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot F_{i+1}G_{i+2}} 。反之, σ i + 2 {\displaystyle \sigma _{i+2}} 和 σ i + 1 {\displaystyle \sigma _{i+1}} 之间的交点是路径 C i {\displaystyle C_{i}} ,权重为 − V 2 A i + 2 A i + 1 ⋅ Δ c i + 2 Δ c i + 1 ⋅ F i + 2 G i + 1 {\displaystyle -{\frac {V^{2}}{A_{i+2}A_{i+1}}}\cdot \Delta c_{i+2}\Delta c_{i+1}\cdot F_{i+2}G_{i+1}} 。
除了 σ i + 1 {\displaystyle \sigma _{i+1}} 和 σ i + 2 {\displaystyle \sigma _{i+2}} 之间的交点,以及 σ i + 2 {\displaystyle \sigma _{i+2}} 和 σ i + 1 {\displaystyle \sigma _{i+1}} 之间的交点,对于每个单元格和 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,没有其他交点发生。对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配给 C i {\displaystyle C_{i}} 的总权重为 V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ F i + 1 G i + 2 − V 2 A i + 2 A i + 1 ⋅ Δ c i + 2 Δ c i + 1 ⋅ F i + 2 G i + 1 {\displaystyle {\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot F_{i+1}G_{i+2}-{\frac {V^{2}}{A_{i+2}A_{i+1}}}\cdot \Delta c_{i+2}\Delta c_{i+1}\cdot F_{i+2}G_{i+1}} = V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) {\displaystyle ={\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1})} .
当前单元格中 F × G {\displaystyle \mathbf {F} \times \mathbf {G} } 的值大约为 ∑ i l i ⋅ Δ c i ⋅ a ^ i V ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) {\displaystyle \sum _{i}{\frac {l_{i}\cdot \Delta c_{i}\cdot {\hat {\mathbf {a} }}_{i}}{V\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}}}\cdot {\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1})} = ∑ i V l i A i + 1 A i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle =\sum _{i}{\frac {Vl_{i}}{A_{i+1}A_{i+2}}}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} 。 l i ⋅ Δ c i ⋅ a ^ i V ⋅ Δ c 1 Δ c 2 Δ c 3 {\displaystyle {\frac {l_{i}\cdot \Delta c_{i}\cdot {\hat {\mathbf {a} }}_{i}}{V\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}}}} 系数的存在是为了将每条路径的位移分布到当前单元格中。
因此 F × G = ∑ i V l i A i + 1 A i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \mathbf {F} \times \mathbf {G} =\sum _{i}{\frac {Vl_{i}}{A_{i+1}A_{i+2}}}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} 。请注意, F {\displaystyle \mathbf {F} } 和 G {\displaystyle \mathbf {G} } 都是使用表面基向量表示的,但 F × G {\displaystyle \mathbf {F} \times \mathbf {G} } 使用的是位移基向量。
为了节省空间,符号 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 将从各种术语中省略。但是,给定一个量 Q {\displaystyle Q} 和一个任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符号 [ Q ] − i {\displaystyle [Q]_{-i}} 将表示通过沿由 i {\displaystyle i} 索引的维度后退一步,相邻单元格中的量。该单元格将被称为当前单元格的 − i {\displaystyle -i} 邻居。
给定一个由向量场 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 表示的多路径 C {\displaystyle \mathbf {C} } ,表示端点的标量场可以按如下方式计算
以下计算适用于每个单元格
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配给 C i {\displaystyle C_{i}} 的权重由 C {\displaystyle \mathbf {C} } 计算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}} 是当前单元格包含的总位移的 a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} 分量。计算分配给 C i {\displaystyle C_{i}} 的权重要求此位移分布在 C i {\displaystyle C_{i}} 的长度上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i Δ c i ⋅ l i = V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}}{\Delta c_{i}\cdot l_{i}}}={\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} .
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,路径 C i {\displaystyle C_{i}} 对当前单元格的晶格点贡献一个权重 + V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle +{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} ,路径 [ C i ] − i {\displaystyle [C_{i}]_{-i}} 对当前单元格的晶格点贡献一个权重 − [ V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ] − i {\displaystyle -\left[{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right]_{-i}} 。
当前单元格的晶格点的总权重为 ∑ i ( + V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i − [ V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ] − i ) {\displaystyle \sum _{i}\left(+{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}-\left[{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right]_{-i}\right)} ≈ ∑ i Δ c i ∂ ∂ c i ( V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ) {\displaystyle \approx \sum _{i}\Delta c_{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right)} = Δ c 1 Δ c 2 Δ c 3 ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle =\Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} .
将分配给当前晶格点的权重分散到当前单元格的体积上得到: ∇ ⋅ J = 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle \nabla \cdot \mathbf {J} ={\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} = 1 V ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle ={\frac {1}{V}}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} .
因此: ∇ ⋅ J = 1 V ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle \nabla \cdot \mathbf {J} ={\frac {1}{V}}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} . 请注意 J {\displaystyle \mathbf {J} } 是使用位移基向量表示的。
为了节省空间,符号 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 将从各种术语中省略。但是,给定一个量 Q {\displaystyle Q} 和一个任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符号 [ Q ] − i {\displaystyle [Q]_{-i}} 将表示通过沿由 i {\displaystyle i} 索引的维度后退一步,相邻单元格中的量。该单元格将被称为当前单元格的 − i {\displaystyle -i} 邻居。
给定一个由向量场表示的多曲面 S {\displaystyle \mathbf {S} } F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} ,可以按如下方式计算表示逆时针边界的向量场
以下计算适用于每个单元格
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , S {\displaystyle \mathbf {S} } 分配给 σ i {\displaystyle \sigma _{i}} 的权重计算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是当前单元格包含的总表面矢量的 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 分量。计算分配给 σ i {\displaystyle \sigma _{i}} 的权重需要将此表面矢量分布在 σ i {\displaystyle \sigma _{i}} 的面积上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , surfaces that contain path C i {\displaystyle C_{i}} as part of their boundary include σ i + 1 {\displaystyle \sigma _{i+1}} , [ σ i + 1 ] − ( i + 2 ) {\displaystyle [\sigma _{i+1}]_{-(i+2)}} , σ i + 2 {\displaystyle \sigma _{i+2}} , and [ σ i + 2 ] − ( i + 1 ) {\displaystyle [\sigma _{i+2}]_{-(i+1)}} . C i {\displaystyle C_{i}} receives a mass of − V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 {\displaystyle -{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}} from σ i + 1 {\displaystyle \sigma _{i+1}} ; a mass of + [ V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ] − ( i + 2 ) {\displaystyle +\left[{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right]_{-(i+2)}} from [ σ i + 1 ] − ( i + 2 ) {\displaystyle [\sigma _{i+1}]_{-(i+2)}} ; a mass of + V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 {\displaystyle +{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}} from σ i + 2 {\displaystyle \sigma _{i+2}} ; and a mass of − [ V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ] − ( i + 1 ) {\displaystyle -\left[{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right]_{-(i+1)}} from [ σ i + 2 ] − ( i + 1 ) {\displaystyle [\sigma _{i+2}]_{-(i+1)}} . The total mass assigned to C i {\displaystyle C_{i}} is − V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 + [ V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ] − ( i + 2 ) + V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 − [ V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ] − ( i + 1 ) {\displaystyle -{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}+\left[{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right]_{-(i+2)}+{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}-\left[{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right]_{-(i+1)}} ≈ − Δ c i + 2 ∂ ∂ c i + 2 ( V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ) + Δ c i + 1 ⋅ ∂ ∂ c i + 1 ( V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ) {\displaystyle \approx -\Delta c_{i+2}{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right)+\Delta c_{i+1}\cdot {\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right)} = Δ c i + 1 Δ c i + 2 ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) {\displaystyle =\Delta c_{i+1}\Delta c_{i+2}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right)} .
将每个 C i {\displaystyle C_{i}} 生成的位移分布到当前单元的体积上,得到: ∇ × F = ∑ i Δ c i ⋅ l i ⋅ a ^ i Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c i + 1 Δ c i + 2 ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {\Delta c_{i}\cdot l_{i}\cdot {\hat {\mathbf {a} }}_{i}}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{i+1}\Delta c_{i+2}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right)} = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) a ^ i {\displaystyle =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
因此: ∇ × F = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) a ^ i {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} 。请注意 F {\displaystyle \mathbf {F} } 使用表面基向量表示,但 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 使用位移基向量表示。
为了节省空间,符号 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 将从各种术语中省略。但是,给定一个量 Q {\displaystyle Q} 和一个任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符号 [ Q ] − i {\displaystyle [Q]_{-i}} 将表示通过沿由 i {\displaystyle i} 索引的维度后退一步,相邻单元格中的量。该单元格将被称为当前单元格的 − i {\displaystyle -i} 邻居。
给定一个由标量场 U {\displaystyle U} 表示的多体积 U {\displaystyle \mathbf {U} } ,可以按照如下方法计算表示内向表面的向量场:
以下计算适用于每个单元格
细胞的体积 Ω {\displaystyle \Omega } 的权重为 U {\displaystyle U} 。
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,表面 σ i {\displaystyle \sigma _{i}} 从当前细胞接收 U {\displaystyle U} 的权重,并从当前细胞的 − i {\displaystyle -i} 邻居接收 − [ U ] − i {\displaystyle -[U]_{-i}} 的权重。总权重简单地为 U − [ U ] − i ≈ Δ c i ∂ U ∂ c i {\displaystyle U-[U]_{-i}\approx \Delta c_{i}{\frac {\partial U}{\partial c_{i}}}} 。将每个 σ i {\displaystyle \sigma _{i}} 生成的表面向量分布在当前细胞的体积上,得到: ∇ U = ∑ i Δ c i + 1 Δ c i + 2 ⋅ A i ⋅ a ^ i Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c i ∂ U ∂ c i {\displaystyle \nabla U=\sum _{i}{\frac {\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}\cdot {\hat {\mathbf {a} }}^{i}}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{i}{\frac {\partial U}{\partial c_{i}}}} = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle =\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} 。
因此: ∇ U = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} 。注意, ∇ U {\displaystyle \nabla U} 使用表面基向量。
给定多路径 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 和多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} , J {\displaystyle \mathbf {J} } 与 F {\displaystyle \mathbf {F} } 的交点是多点 J ⋅ F = ∑ i V l i A i J i F i {\displaystyle \mathbf {J} \cdot \mathbf {F} =\sum _{i}{\frac {V}{l_{i}A_{i}}}J_{i}F_{i}} .
给定多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 和 G = ∑ i G i a ^ i {\displaystyle \mathbf {G} =\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}} , F {\displaystyle \mathbf {F} } 与 G {\displaystyle \mathbf {G} } 的交点是多路径 F × G = ∑ i l i V A i + 1 A i + 2 ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \mathbf {F} \times \mathbf {G} =\sum _{i}{\frac {l_{i}V}{A_{i+1}A_{i+2}}}(F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} .
给定多路径 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} , J {\displaystyle \mathbf {J} } 的端点是多点 ∇ ⋅ J = ∑ i 1 V ∂ ∂ c i ( V l i J i ) {\displaystyle \nabla \cdot \mathbf {J} =\sum _{i}{\frac {1}{V}}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}J_{i}\right)} .
给定多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} , F {\displaystyle \mathbf {F} } 的逆时针边界是多路径 ∇ × F = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 F i + 1 ) ) a ^ i {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
给定多体积 U {\displaystyle U} , U {\displaystyle U} 的内向表面是多表面 ∇ U = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} .
在位移基向量 { a ^ 1 , a ^ 2 , a ^ 3 } {\displaystyle \{{\hat {\mathbf {a} }}_{1},{\hat {\mathbf {a} }}_{2},{\hat {\mathbf {a} }}_{3}\}} 彼此正交(垂直)的特殊情况下,
表面基向量与位移基向量相同: ∀ i ∈ { 1 , 2 , 3 } : a ^ i = a ^ i {\displaystyle \forall i\in \{1,2,3\}:{\hat {\mathbf {a} }}^{i}={\hat {\mathbf {a} }}_{i}} .
对于每个 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , A i = l i + 1 l i + 2 {\displaystyle A_{i}=l_{i+1}l_{i+2}} .
V = l 1 l 2 l 3 {\displaystyle V=l_{1}l_{2}l_{3}} .
上述公式简化为
( ∑ i J i a ^ i ) ⋅ ( ∑ i F i a ^ i ) = ∑ i J i F i {\displaystyle \left(\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}\right)\cdot \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}J_{i}F_{i}} .
( ∑ i F i a ^ i ) × ( ∑ i G i a ^ i ) = ∑ i ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)\times \left(\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}(F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} .
∇ ⋅ ( ∑ i J i a ^ i ) = ∑ i 1 l 1 l 2 l 3 ∂ ∂ c .
∇ × ( ∑ i F i a ^ i ) = ∑ i 1 l i + 1 l i + 2 ( ∂ ∂ c i + 1 ( l i + 2 F i + 2 ) − ∂ ∂ c i + 2 ( l i + 1 F i + 1 ) ) a ^ i {\displaystyle \nabla \times \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}{\frac {1}{l_{i+1}l_{i+2}}}\left({\frac {\partial }{\partial c_{i+1}}}(l_{i+2}F_{i+2})-{\frac {\partial }{\partial c_{i+2}}}\left(l_{i+1}F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
∇ U = ∑ i 1 l i ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {1}{l_{i}}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} .
对于笛卡尔坐标系, c 1 = x {\displaystyle c_{1}=x} , c 2 = y {\displaystyle c_{2}=y} , c 3 = z {\displaystyle c_{3}=z} ,以及 a ^ 1 = a ^ 1 = x ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {x} }}} , a ^ 2 = a ^ 2 = y ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {y} }}} , a ^ 3 = a ^ 3 = z ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {z} }}} ,以及 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = 1 {\displaystyle l_{2}=1} , l 3 = 1 {\displaystyle l_{3}=1} 。因此
( J x x ^ + J y y ^ + J z z ^ ) ⋅ ( F x x ^ + F y y ^ + F z z ^ ) = J x F x + J y F y + J z F z {\displaystyle (J_{x}{\hat {\mathbf {x} }}+J_{y}{\hat {\mathbf {y} }}+J_{z}{\hat {\mathbf {z} }})\cdot (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})=J_{x}F_{x}+J_{y}F_{y}+J_{z}F_{z}} .
( F x x ^ + F y y ^ + F z z ^ ) × ( G x x ^ + G y y ^ + G z z ^ ) = ( F y G z − F z G y ) x ^ + ( F z G x − F x G z ) y ^ + ( F x G y − F y G x ) z ^ {\displaystyle (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})\times (G_{x}{\hat {\mathbf {x} }}+G_{y}{\hat {\mathbf {y} }}+G_{z}{\hat {\mathbf {z} }})=(F_{y}G_{z}-F_{z}G_{y}){\hat {\mathbf {x} }}+(F_{z}G_{x}-F_{x}G_{z}){\hat {\mathbf {y} }}+(F_{x}G_{y}-F_{y}G_{x}){\hat {\mathbf {z} }}} .
∇ ⋅ ( J x x ^ + J y y ^ + J z z ^ ) = ∂ J x ∂ x + ∂ J y ∂ y + ∂ J z ∂ z {\displaystyle \nabla \cdot (J_{x}{\hat {\mathbf {x} }}+J_{y}{\hat {\mathbf {y} }}+J_{z}{\hat {\mathbf {z} }})={\frac {\partial J_{x}}{\partial x}}+{\frac {\partial J_{y}}{\partial y}}+{\frac {\partial J_{z}}{\partial z}}} ∇ × ( F x x ^ + F y y ^ + F z z ^ ) = ( ∂ F z ∂ y − ∂ F y ∂ z ) x ^ + ( ∂ F x ∂ z − ∂ F z ∂ x ) y ^ + ( ∂ F y ∂ x − ∂ F x ∂ y ) z ^ {\displaystyle \nabla \times (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})=\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right){\hat {\mathbf {x} }}+\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right){\hat {\mathbf {y} }}+\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right){\hat {\mathbf {z} }}} .
∇ U = ∂ U ∂ x x ^ + ∂ U ∂ y y ^ + ∂ U ∂ z z ^ {\displaystyle \nabla U={\frac {\partial U}{\partial x}}{\hat {\mathbf {x} }}+{\frac {\partial U}{\partial y}}{\hat {\mathbf {y} }}+{\frac {\partial U}{\partial z}}{\hat {\mathbf {z} }}} .
对于柱坐标系, c 1 = ρ {\displaystyle c_{1}=\rho } , c 2 = ϕ {\displaystyle c_{2}=\phi } , c 3 = z {\displaystyle c_{3}=z} ,并且 a ^ 1 = a ^ 1 = ρ ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {\rho } }}} , a ^ 2 = a ^ 2 = ϕ ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {\phi } }}} , a ^ 3 = a ^ 3 = z ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {z} }}} ,并且 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = ρ {\displaystyle l_{2}=\rho } , l 3 = 1 {\displaystyle l_{3}=1} 。因此
( J ρ ρ ^ + J ϕ ϕ ^ + J z z ^ ) ⋅ ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = J ρ F ρ + J ϕ F ϕ + J z F z {\displaystyle (J_{\rho }{\hat {\mathbf {\rho } }}+J_{\phi }{\hat {\mathbf {\phi } }}+J_{z}{\hat {\mathbf {z} }})\cdot (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})=J_{\rho }F_{\rho }+J_{\phi }F_{\phi }+J_{z}F_{z}} .
( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) × ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = ( F ϕ G z − F z G ϕ ) ρ ^ + ( F z G ρ − F ρ G z ) ϕ ^ + ( F ρ G ϕ − F ϕ G ρ ) z ^ {\displaystyle (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})\times (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})=(F_{\phi }G_{z}-F_{z}G_{\phi }){\hat {\mathbf {\rho } }}+(F_{z}G_{\rho }-F_{\rho }G_{z}){\hat {\mathbf {\phi } }}+(F_{\rho }G_{\phi }-F_{\phi }G_{\rho }){\hat {\mathbf {z} }}} ∇ ⋅ ( J ρ ρ ^ + J ϕ ϕ ^ + J z z ^ ) = 1 ρ ( ∂ ∂ ρ ( ρ J ρ ) + ∂ F ϕ ∂ ϕ + ∂ ∂ z ( ρ F z ) ) {\displaystyle \nabla \cdot (J_{\rho }{\hat {\mathbf {\rho } }}+J_{\phi }{\hat {\mathbf {\phi } }}+J_{z}{\hat {\mathbf {z} }})={\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho J_{\rho })+{\frac {\partial F_{\phi }}{\partial \phi }}+{\frac {\partial }{\partial z}}(\rho F_{z})\right)} .
∇ × ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = 1 ρ ( ∂ F z ∂ ϕ − ∂ ∂ z ( ρ F ϕ ) ) ρ ^ + ( ∂ F ρ ∂ z − ∂ F z ∂ ρ ) ϕ ^ + 1 ρ ( ∂ ∂ ρ ( ρ F ϕ ) − ∂ F ρ ∂ ϕ ) z ^ {\displaystyle \nabla \times (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})={\frac {1}{\rho }}\left({\frac {\partial F_{z}}{\partial \phi }}-{\frac {\partial }{\partial z}}(\rho F_{\phi })\right){\hat {\mathbf {\rho } }}+\left({\frac {\partial F_{\rho }}{\partial z}}-{\frac {\partial F_{z}}{\partial \rho }}\right){\hat {\mathbf {\phi } }}+{\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho F_{\phi })-{\frac {\partial F_{\rho }}{\partial \phi }}\right){\hat {\mathbf {z} }}} .
∇ U = ∂ U ∂ ρ ρ ^ + 1 ρ ∂ U ∂ ϕ ϕ ^ + ∂ U ∂ z z ^ {\displaystyle \nabla U={\frac {\partial U}{\partial \rho }}{\hat {\mathbf {\rho } }}+{\frac {1}{\rho }}{\frac {\partial U}{\partial \phi }}{\hat {\mathbf {\phi } }}+{\frac {\partial U}{\partial z}}{\hat {\mathbf {z} }}} .
对于球坐标系, c 1 = r {\displaystyle c_{1}=r} , c 2 = θ {\displaystyle c_{2}=\theta } , c 3 = ϕ {\displaystyle c_{3}=\phi } ,并且 a ^ 1 = a ^ 1 = r ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {r} }}} , a ^ 2 = a ^ 2 = θ ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {\theta } }}} , a ^ 3 = a ^ 3 = ϕ ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {\phi } }}} ,以及 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = r {\displaystyle l_{2}=r} , l 3 = r sin θ {\displaystyle l_{3}=r\sin \theta } 。因此
( J r r ^ + J θ θ ^ + J ϕ ϕ ^ ) ⋅ ( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) = J r F r + J θ F θ + J ϕ F ϕ {\displaystyle (J_{r}{\hat {\mathbf {r} }}+J_{\theta }{\hat {\mathbf {\theta } }}+J_{\phi }{\hat {\mathbf {\phi } }})\cdot (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})=J_{r}F_{r}+J_{\theta }F_{\theta }+J_{\phi }F_{\phi }} .
( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) × ( G r r ^ + G θ θ ^ + G ϕ ϕ ^ ) = ( F θ G ϕ − F ϕ G θ ) r ^ + ( F ϕ G r − F r G ϕ ) θ ^ + ( F r G θ − F θ G r ) ϕ ^ {\displaystyle (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})\times (G_{r}{\hat {\mathbf {r} }}+G_{\theta }{\hat {\mathbf {\theta } }}+G_{\phi }{\hat {\mathbf {\phi } }})=(F_{\theta }G_{\phi }-F_{\phi }G_{\theta }){\hat {\mathbf {r} }}+(F_{\phi }G_{r}-F_{r}G_{\phi }){\hat {\mathbf {\theta } }}+(F_{r}G_{\theta }-F_{\theta }G_{r}){\hat {\mathbf {\phi } }}} .
∇ ⋅ ( J r r ^ + J θ θ ^ + J ϕ ϕ ^ ) = 1 r 2 sin θ ( ∂ ∂ r ( r 2 sin θ J r ) + ∂ ∂ θ ( r sin θ J θ ) + ∂ ∂ ϕ ( r F ϕ ) ) {\displaystyle \nabla \cdot (J_{r}{\hat {\mathbf {r} }}+J_{\theta }{\hat {\mathbf {\theta } }}+J_{\phi }{\hat {\mathbf {\phi } }})={\frac {1}{r^{2}\sin \theta }}\left({\frac {\partial }{\partial r}}(r^{2}\sin \theta J_{r})+{\frac {\partial }{\partial \theta }}(r\sin \theta J_{\theta })+{\frac {\partial }{\partial \phi }}(rF_{\phi })\right)} .
∇ × ( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) = 1 r 2 sin θ ( ∂ ∂ θ ( r sin θ F ϕ ) − ∂ ∂ ϕ ( r F θ ) ) r ^ + 1 r sin θ ( ∂ F r ∂ ϕ − ∂ ∂ r ( r sin θ F ϕ ) ) θ ^ + 1 r ( ∂ ∂ r ( r F θ ) − ∂ F r ∂ θ ) ϕ ^ {\displaystyle \nabla \times (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})={\frac {1}{r^{2}\sin \theta }}\left({\frac {\partial }{\partial \theta }}(r\sin \theta F_{\phi })-{\frac {\partial }{\partial \phi }}(rF_{\theta })\right){\hat {\mathbf {r} }}+{\frac {1}{r\sin \theta }}\left({\frac {\partial F_{r}}{\partial \phi }}-{\frac {\partial }{\partial r}}(r\sin \theta F_{\phi })\right){\hat {\mathbf {\theta } }}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}(rF_{\theta })-{\frac {\partial F_{r}}{\partial \theta }}\right){\hat {\mathbf {\phi } }}} .
∇ U = ∂ U ∂ r r ^ + 1 r ∂ U ∂ θ θ ^ + 1 r sin θ ∂ U ∂ ϕ ϕ ^ {\displaystyle \nabla U={\frac {\partial U}{\partial r}}{\hat {\mathbf {r} }}+{\frac {1}{r}}{\frac {\partial U}{\partial \theta }}{\hat {\mathbf {\theta } }}+{\frac {1}{r\sin \theta }}{\frac {\partial U}{\partial \phi }}{\hat {\mathbf {\phi } }}} .
许多与向量微积分相关的恒等式可以从检查路径-体积交点和表面-表面交点的端点推导出来。
多路径与多体积交点的端点有两个来源:多路径中原本就在多体积内的端点,以及路径进入和离开体积生成的端点。
从一个多路径 C {\displaystyle \mathbf {C} } 开始,用矢量场 J {\displaystyle \mathbf {J} } 表示,以及一个多体积 U {\displaystyle \mathbf {U} } ,用标量场 U {\displaystyle U} 表示。交叉点 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 用矢量场 J U {\displaystyle \mathbf {J} U} 表示。
Any time a path C {\displaystyle C} with weight w 1 {\displaystyle w_{1}} starts in a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} , the intersection C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } gains an endpoint at the starting point of C {\displaystyle C} with weight w 1 w 2 {\displaystyle w_{1}w_{2}} . Any time a path C {\displaystyle C} with weight w 1 {\displaystyle w_{1}} finishes in a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} , the intersection C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } gains an endpoint at the finishing point of C {\displaystyle C} with weight − w 1 w 2 {\displaystyle -w_{1}w_{2}} . The endpoints for C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } that are generated when paths from C {\displaystyle \mathbf {C} } start or finish in volumes from U {\displaystyle \mathbf {U} } is the intersection of the endpoints of C {\displaystyle \mathbf {C} } with multi-volume U {\displaystyle \mathbf {U} } . This contributes the term ( ∇ ⋅ J ) U {\displaystyle (\nabla \cdot \mathbf {J} )U} to ∇ ⋅ ( J U ) {\displaystyle \nabla \cdot (\mathbf {J} U)} .
每当一条带权重为 w 1 {\displaystyle w_{1}} 的路径 C {\displaystyle C} 进入一个带权重为 w 2 {\displaystyle w_{2}} 的体积 Ω {\displaystyle \Omega } 时,交集 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 在进入点处获得一个带权重为 w 1 w 2 {\displaystyle w_{1}w_{2}} 的端点。每当一条带权重为 w 1 {\displaystyle w_{1}} 的路径 C {\displaystyle C} 离开一个带权重为 w 2 {\displaystyle w_{2}} 的体积 Ω {\displaystyle \Omega } 时,交集 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 在离开点处获得一个带权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端点。当来自 C {\displaystyle \mathbf {C} } 的路径进入或离开来自 U {\displaystyle \mathbf {U} } 的体积时,为 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 生成的端点是多路径 C {\displaystyle \mathbf {C} } 与 U {\displaystyle \mathbf {U} } 的内向多曲面的交集。这为 ∇ ⋅ ( J U ) {\displaystyle \nabla \cdot (\mathbf {J} U)} 提供了项 J ⋅ ( ∇ U ) {\displaystyle \mathbf {J} \cdot (\nabla U)} 。
集合 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 的所有端点是: ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} 。本质上,集合 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 的端点是 C {\displaystyle \mathbf {C} } 中包含在 U {\displaystyle \mathbf {U} } 中的那些端点,再加上从 C {\displaystyle \mathbf {C} } 出入 U {\displaystyle \mathbf {U} } 体积的路径上的那些点。这在右侧的图像中有所描绘。
从恒等式 ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} ,计算总的点权重得到: ∭ q ∈ R 3 ∇ ⋅ ( J ( q ) U ( q ) ) d V = ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V + ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {J} (\mathbf {q} )U(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV+\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} 。对于多路径的端点,每个起点必须与一个终点配对,因此多路径的端点的总点权重为 0。 ∭ q ∈ R 3 ∇ ⋅ ( J ( q ) U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {J} (\mathbf {q} )U(\mathbf {q} ))dV=0} ,因此 ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} 。多路径 C {\displaystyle \mathbf {C} } 与多体积 U {\displaystyle \mathbf {U} } 之间的总交点是 C {\displaystyle \mathbf {C} } 与 U {\displaystyle \mathbf {U} } 的内向表面之间的总交点的负值。
如果 J {\displaystyle \mathbf {J} } 表示从点 q 0 {\displaystyle \mathbf {q} _{0}} 开始,到点 q 1 {\displaystyle \mathbf {q} _{1}} 结束的简单路径 C {\displaystyle C} ,那么上述积分恒等式变为
∭ q ∈ R 3 ( ∇ ⋅ δ 1 ( q ; C ) ) U ( q ) d V = − ∭ q ∈ R 3 δ 1 ( q ; C ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \delta _{1}(\mathbf {q} ;C))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)\cdot (\nabla U(\mathbf {q} ))dV} ⟺ ∭ q ∈ R 3 ( δ 0 ( q ; q 0 ) − δ 0 ( q ; q 1 ) ) U ( q ) d V = − ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q {\displaystyle \iff \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})-\delta _{0}(\mathbf {q} ;\mathbf {q} _{1}))U(\mathbf {q} )dV=-\int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} } ⟺ U ( q 0 ) − U ( q 1 ) = − ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q {\displaystyle \iff U(\mathbf {q} _{0})-U(\mathbf {q} _{1})=-\int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} } ⟺ ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q = U ( q 1 ) − U ( q 0 ) {\displaystyle \iff \int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} =U(\mathbf {q} _{1})-U(\mathbf {q} _{0})} 这被称为 **梯度定理**。
如果 U {\displaystyle U} 表示具有 **向外** 指向表面的简单体积 Ω {\displaystyle \Omega } σ {\displaystyle \sigma } ,那么积分恒等式变为
∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) δ 3 ( q ; Ω ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ δ 3 ( q ; Ω ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))\delta _{3}(\mathbf {q} ;\Omega )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla \delta _{3}(\mathbf {q} ;\Omega ))dV} ⟺ ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( − δ 2 ( q ; σ ) ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (-\delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } 这是 **高斯散度定理** 。
总结
给定由向量场 J {\displaystyle \mathbf {J} } 表示的多路径,以及由标量场 U {\displaystyle U} 表示的多体积,则交点的端点为: ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} .
给定由向量场 J {\displaystyle \mathbf {J} } 表示的多路径,以及由标量场 U {\displaystyle U} 表示的多体积,则 ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} .
给定一条简单的路径 C {\displaystyle C} ,它从点 q 0 {\displaystyle \mathbf {q} _{0}} 开始,并在点 q 1 {\displaystyle \mathbf {q} _{1}} 结束,以及由标量场 U {\displaystyle U} 表示的多体积,则 ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q = U ( q 1 ) − U ( q 0 ) {\displaystyle \int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} =U(\mathbf {q} _{1})-U(\mathbf {q} _{0})} 。这就是梯度定理 。
给定由矢量场 J {\displaystyle \mathbf {J} } 表示的多路径,以及具有向外定向表面 σ {\displaystyle \sigma } 的简单体积 Ω {\displaystyle \Omega } ,则 ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } 。这就是高斯散度定理 。
当第一个表面(蓝色)的逆时针边界与第二个表面(橙色)相交时,将为交点路径创建具有正确极性的端点。当第二个表面的逆时针边界与第一个表面相交时,将为交点路径创建具有相反极性的端点。
首先,我们有两个多曲面 S 1 {\displaystyle \mathbf {S} _{1}} ,用向量场 F 1 {\displaystyle \mathbf {F} _{1}} 表示,以及第二个多曲面 S 2 {\displaystyle \mathbf {S} _{2}} ,用向量场 F 2 {\displaystyle \mathbf {F} _{2}} 表示。它们的交集 S 1 ∩ S 2 {\displaystyle \mathbf {S} _{1}\cap \mathbf {S} _{2}} 用向量场 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 表示。
现在,我们考虑一个来自 S 1 {\displaystyle \mathbf {S} _{1}} 且权重为 w 1 {\displaystyle w_{1}} 的曲面 σ 1 {\displaystyle \sigma _{1}} ,以及一个来自 S 2 {\displaystyle \mathbf {S} _{2}} 且权重为 w 2 {\displaystyle w_{2}} 的曲面 σ 2 {\displaystyle \sigma _{2}} 。我们用 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 表示 σ 1 {\displaystyle \sigma _{1}} 的逆时针边界,并用 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 表示 σ 2 {\displaystyle \sigma _{2}} 的逆时针边界。关于 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 的端点,有 4 种情况。
当 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 与 σ 2 {\displaystyle \sigma _{2}} 在首选方向上相交时,交点 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 的权重为 + w 1 w 2 {\displaystyle +w_{1}w_{2}} ,而 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 在 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 处形成一个权重为 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 的端点(起点)。
当 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 与 σ 2 {\displaystyle \sigma _{2}} 在相反方向上相交时,交点 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 的权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} ,而 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 在 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 处形成一个权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端点(终点)。
当 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 与 σ 1 {\displaystyle \sigma _{1}} 在优先方向相交时,交点 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 的权重为 + w 1 w 2 {\displaystyle +w_{1}w_{2}} ,而对于 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,在 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 处形成一个权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端点(结束点)。
当 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 与 σ 1 {\displaystyle \sigma _{1}} 在相反方向相交时,交点 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 的权重为 − w 1 w 2 {\displaystyle -w_{1}w_{2}} ,而对于 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,在 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 处形成一个权重为 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 的端点(起点)。
可以看出,交集 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 为 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 形成端点,并具有正确的极性;而交集 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 为 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 形成端点,并具有相反的极性。这可以在右侧的图像中观察到。这意味着 S 1 ∩ S 2 {\displaystyle \mathbf {S} _{1}\cap \mathbf {S} _{2}} 的端点为: ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} .
显示了两个表面,每个表面都有一个逆时针方向的边界。每个边界与另一个表面的交叉次数相同。红色边界在首选方向上穿过绿色表面 2 次,绿色边界在首选方向上穿过红色表面 2 次。
From the identity ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} , counting the total point weight gives: ∭ q ∈ R 3 ∇ ⋅ ( F 1 ( q ) × F 2 ( q ) ) d V = ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V − ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} . For the endpoints of a multi-path, every starting point must be paired with a finishing point so the total point weight of the endpoints of a multi-path is 0. ∭ q ∈ R 3 ∇ ⋅ ( F 1 ( q ) × F 2 ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV=0} so hence ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} . The total intersection of the counter-clockwise boundary of multi-surface S 1 {\displaystyle \mathbf {S} _{1}} with multi-surface S 2 {\displaystyle \mathbf {S} _{2}} is the total intersection of the counter-clockwise boundary of S 2 {\displaystyle \mathbf {S} _{2}} with S 1 {\displaystyle \mathbf {S} _{1}} . This is illustrated by the image on the right.
如果 F 2 {\displaystyle \mathbf {F} _{2}} 表示具有逆时针方向边界 ∂ σ {\displaystyle \partial \sigma } 的简单表面 σ {\displaystyle \sigma } ,则上述积分恒等式变为
∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ δ 2 ( q ; σ ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × δ 2 ( q ; σ ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \delta _{2}(\mathbf {q} ;\sigma )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∭ q ∈ R 3 F 1 ( q ) ⋅ δ 1 ( q ; ∂ σ ) d V {\displaystyle \iff \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot \delta _{1}(\mathbf {q} ;\partial \sigma )dV} ⟺ ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∫ q ∈ ∂ σ F 1 ( q ) ⋅ d q {\displaystyle \iff \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} _{1}(\mathbf {q} )\cdot d\mathbf {q} }
这被称为斯托克斯定理 。
总结
给定两个由向量场表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和 F 2 {\displaystyle \mathbf {F} _{2}} ,那么它们的交集的端点为: ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} .
给定两个由向量场表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和 F 2 {\displaystyle \mathbf {F} _{2}} ,那么 ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} 。
给定一个由向量场表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和一个简单曲面 σ {\displaystyle \sigma } ,其逆时针方向边界为 ∂ σ {\displaystyle \partial \sigma } ,那么 ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∫ q ∈ ∂ σ F 1 ( q ) ⋅ d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} _{1}(\mathbf {q} )\cdot d\mathbf {q} } 。这就是斯托克斯定理 。
除了从检查交点的端点推导出的恒等式外,还可以通过检查由交点产生的曲面的逆时针边界来推导出更多恒等式。
左侧是一个定向曲面和一个体积。曲面的逆时针边界和体积的内向定向曲面如图所示。右侧是曲面与体积相交形成的曲面,以及交点曲面的逆时针边界也如图所示。交点的边界由两部分组成:原始曲面的边界与体积的交点,以及体积的内向定向曲面与原始曲面的交点。
首先,定义一个多表面 S {\displaystyle \mathbf {S} } ,用向量场 F {\displaystyle \mathbf {F} } 表示,以及一个多体积 U {\displaystyle \mathbf {U} } ,用标量场 U {\displaystyle U} 表示。它们的交集 S ∩ U {\displaystyle \mathbf {S} \cap U} 用向量场 F U {\displaystyle \mathbf {F} U} 表示。
Consider a surface σ {\displaystyle \sigma } with weight w 1 {\displaystyle w_{1}} from S {\displaystyle \mathbf {S} } , and a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} from U {\displaystyle \mathbf {U} } . Let ∂ σ {\displaystyle \partial \sigma } denote the counter-clockwise boundary of σ {\displaystyle \sigma } , and let ∂ Ω {\displaystyle \partial \Omega } denote the inwards oriented surface of Ω {\displaystyle \Omega } . There are two sources for the counter-clockwise boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } . Any time ∂ σ {\displaystyle \partial \sigma } intersects Ω {\displaystyle \Omega } , the intersection ∂ σ ∩ Ω {\displaystyle \partial \sigma \cap \Omega } contributes to the boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } . When ∂ σ {\displaystyle \partial \sigma } leaves Ω {\displaystyle \Omega } , the boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } cannot follow, and instead must trace along the surface of Ω {\displaystyle \Omega } while remaining in the surface σ {\displaystyle \sigma } as indicated in the image to the right. The boundary of the total intersection S ∩ U {\displaystyle \mathbf {S} \cap \mathbf {U} } , denoted by ∇ × ( F U ) {\displaystyle \nabla \times (\mathbf {F} U)} , consists of two parts: the intersection of the boundary of S {\displaystyle \mathbf {S} } with U {\displaystyle \mathbf {U} } , denoted by ( ∇ × F ) U {\displaystyle (\nabla \times \mathbf {F} )U} , and the intersection of the inwards-oriented surface of U {\displaystyle \mathbf {U} } with S {\displaystyle \mathbf {S} } , denoted by ( ∇ U ) × F = − F × ( ∇ U ) {\displaystyle (\nabla U)\times \mathbf {F} =-\mathbf {F} \times (\nabla U)} . Therefore: ∇ × ( F U ) = ( ∇ × F ) U + ( ∇ U ) × F = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U+(\nabla U)\times \mathbf {F} =(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} .
从恒等式 ∇ × ( F U ) = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} ,计算总位移得到: ∭ q ∈ R 3 ∇ × ( F ( q ) U ( q ) ) d V = ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V − ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \times (\mathbf {F} (\mathbf {q} )U(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV} 。多曲面的逆时针边界是一个闭合的多回路,回路产生的总位移为 0 {\displaystyle \mathbf {0} } 。 ∭ q ∈ R 3 ∇ × ( F ( q ) U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \times (\mathbf {F} (\mathbf {q} )U(\mathbf {q} ))dV=\mathbf {0} } ,因此 ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV} 。多曲面 S {\displaystyle \mathbf {S} } 的边界与多体积 U {\displaystyle \mathbf {U} } 的总交集是 S {\displaystyle \mathbf {S} } 与 U {\displaystyle \mathbf {U} } 表面的总交集。
如果 F {\displaystyle \mathbf {F} } 表示一个简单曲面 σ {\displaystyle \sigma } ,其逆时针边界为 ∂ σ {\displaystyle \partial \sigma } ,则上述积分恒等式变为
∭ q ∈ R 3 ( ∇ × δ 2 ( q ; σ ) ) U ( q ) d V = ∭ q ∈ R 3 δ 2 ( q ; σ ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \delta _{2}(\mathbf {q} ;\sigma ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )\times (\nabla U(\mathbf {q} ))dV} ⟺ ∭ q ∈ R 3 δ 1 ( q ; ∂ σ ) U ( q ) d V = ∬ q ∈ σ d S × ( ∇ U ( q ) ) {\displaystyle \iff \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;\partial \sigma )U(\mathbf {q} )dV=\iint _{\mathbf {q} \in \sigma }d\mathbf {S} \times (\nabla U(\mathbf {q} ))} ⟺ ∫ q ∈ ∂ σ U ( q ) d q = − ∬ q ∈ σ ( ∇ U ( q ) ) × d S {\displaystyle \iff \int _{\mathbf {q} \in \partial \sigma }U(\mathbf {q} )d\mathbf {q} =-\iint _{\mathbf {q} \in \sigma }(\nabla U(\mathbf {q} ))\times d\mathbf {S} }
如果 Ω {\displaystyle \Omega } 表示一个简单体积,具有向外 指向的表面 σ {\displaystyle \sigma } ,则积分恒等式变为
∭ q ∈ R 3 ( ∇ × F ( q ) ) δ 3 ( q ; Ω ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ δ 3 ( q ; Ω ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla \delta _{3}(\mathbf {q} ;\Omega ))dV} ⟺ ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = ∭ q ∈ R 3 F ( q ) × ( − δ 2 ( q ; σ ) ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (-\delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = − ∬ q ∈ σ F ( q ) × d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} (\mathbf {q} )\times d\mathbf {S} }
总结
给定一个由矢量场 F {\displaystyle \mathbf {F} } 表示的多表面,以及一个由标量场 U {\displaystyle U} 表示的多体积,则交集的反时针边界为: ∇ × ( F U ) = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} .
给定一个由向量场 F {\displaystyle \mathbf {F} } 表示的多重曲面,以及一个由标量场 U {\displaystyle U} 表示的多重体积,则 ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV}
给定一个简单的曲面 σ {\displaystyle \sigma } ,其逆时针边界为 ∂ σ {\displaystyle \partial \sigma } ,以及一个由标量场 U {\displaystyle U} 表示的多重体积,则 ∫ q ∈ ∂ σ U ( q ) d q = − ∬ q ∈ σ ( ∇ U ( q ) ) × d S {\displaystyle \int _{\mathbf {q} \in \partial \sigma }U(\mathbf {q} )d\mathbf {q} =-\iint _{\mathbf {q} \in \sigma }(\nabla U(\mathbf {q} ))\times d\mathbf {S} } .
给定一个由向量场 F {\displaystyle \mathbf {F} } 表示的多重曲面,以及一个简单的体积 Ω {\displaystyle \Omega } ,其外向表面为 σ {\displaystyle \sigma } ,则 ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = − ∬ q ∈ σ F ( q ) × d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} (\mathbf {q} )\times d\mathbf {S} } .
可以通过检查由交集产生的体积的曲面来推导出更多恒等式。
体积-体积交集的曲面由两部分组成:第二体积的曲面与第一个体积的交集,以及第一个体积的曲面与第二个体积的交集。
从一个多体积的 U 1 {\displaystyle \mathbf {U} _{1}} 开始,用标量场 U 1 {\displaystyle U_{1}} 表示,以及第二个多体积的 U 2 {\displaystyle \mathbf {U} _{2}} ,用标量场 U 2 {\displaystyle U_{2}} 表示。交集 U 1 ∩ U 2 {\displaystyle \mathbf {U} _{1}\cap \mathbf {U} _{2}} 用标量场 U 1 U 2 {\displaystyle U_{1}U_{2}} 表示。
Consider a volume Ω 1 {\displaystyle \Omega _{1}} with weight w 1 {\displaystyle w_{1}} from U 1 {\displaystyle \mathbf {U} _{1}} , and a volume Ω 2 {\displaystyle \Omega _{2}} with weight w 2 {\displaystyle w_{2}} from U 2 {\displaystyle \mathbf {U} _{2}} . Let σ 1 {\displaystyle \sigma _{1}} denote the inwards-oriented surface of Ω 1 {\displaystyle \Omega _{1}} , and let σ 2 {\displaystyle \sigma _{2}} denote the inwards-oriented surface of Ω 2 {\displaystyle \Omega _{2}} . There are two parts to the inwards-oriented surface of the intersection Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} , as shown in the image to the right. Part of the surface of Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} consists of the portion of σ 2 {\displaystyle \sigma _{2}} that is contained by Ω 1 {\displaystyle \Omega _{1}} , which contributes the term U 1 ( ∇ U 2 ) {\displaystyle U_{1}(\nabla U_{2})} to ∇ ( U 1 U 2 ) {\displaystyle \nabla (U_{1}U_{2})} . The other part of the surface of Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} consists of the portion of σ 1 {\displaystyle \sigma _{1}} that is contained by Ω 2 {\displaystyle \Omega _{2}} , which contributes the term ( ∇ U 1 ) U 2 {\displaystyle (\nabla U_{1})U_{2}} to ∇ ( U 1 U 2 ) {\displaystyle \nabla (U_{1}U_{2})} . Therefore the total surface of U 1 ∩ U 2 {\displaystyle \mathbf {U} _{1}\cap \mathbf {U} _{2}} is ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} .
从恒等式 ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} ,计算总表面向量得到: ∭ q ∈ R 3 ∇ ( U 1 ( q ) U 2 ( q ) ) d V = ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V + ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla (U_{1}(\mathbf {q} )U_{2}(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV+\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} 。多体积的向内表面是一个封闭的多表面,封闭表面的总表面向量是 0 {\displaystyle \mathbf {0} } 。 ∭ q ∈ R 3 ∇ ( U 1 ( q ) U 2 ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla (U_{1}(\mathbf {q} )U_{2}(\mathbf {q} ))dV=\mathbf {0} } ,因此 ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} 。多体积 U 1 {\displaystyle \mathbf {U} _{1}} 与多体积 U 2 {\displaystyle \mathbf {U} _{2}} 的向内表面交集的总表面向量与 U 1 {\displaystyle \mathbf {U} _{1}} 的向内表面与 U 2 {\displaystyle \mathbf {U} _{2}} 交集的总表面向量相反。
如果 U 1 {\displaystyle U_{1}} 表示一个具有**外向**法线方向的简单体积 Ω {\displaystyle \Omega } 的曲面 σ {\displaystyle \sigma } ,那么上述积分恒等式变为: ∭ q ∈ R 3 δ 3 ( q ; Ω ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ δ 3 ( q ; Ω ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \delta _{3}(\mathbf {q} ;\Omega ))U_{2}(\mathbf {q} )dV} ⟺ ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( − δ 2 ( q ; σ ) ) U 2 ( q ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(-\delta _{2}(\mathbf {q} ;\sigma ))U_{2}(\mathbf {q} )dV} ⟺ ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = ∬ q ∈ σ U 2 ( q ) d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }U_{2}(\mathbf {q} )d\mathbf {S} }
总结
给定两个由标量场 U 1 {\displaystyle U_{1}} 和 U 2 {\displaystyle U_{2}} 表示的两个多体积,那么它们的交集的内向法线方向的曲面为: ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} .
给定两个由标量场表示的多体积,分别记为 U 1 {\displaystyle U_{1}} 和 U 2 {\displaystyle U_{2}} ,则 ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} .
给定一个简单的体积 Ω {\displaystyle \Omega } ,其外表面为 σ {\displaystyle \sigma } ,以及一个由标量场表示的多体积 U 2 {\displaystyle U_{2}} ,则 ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = ∬ q ∈ σ U 2 ( q ) d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }U_{2}(\mathbf {q} )d\mathbf {S} } .
下表总结了之前各节的结果
交点的端点、边界和表面
结构 1
结构 2
交点
端点、边界或表面
多路径 J 1 {\displaystyle \mathbf {J} _{1}}
多体积 U 2 {\displaystyle U_{2}}
多路径 J 1 U 2 {\displaystyle \mathbf {J} _{1}U_{2}}
多点 ∇ ⋅ ( J 1 U 2 ) = ( ∇ ⋅ J 1 ) U 2 + J 1 ⋅ ( ∇ U 2 ) {\displaystyle \nabla \cdot (\mathbf {J} _{1}U_{2})=(\nabla \cdot \mathbf {J} _{1})U_{2}+\mathbf {J} _{1}\cdot (\nabla U_{2})}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多路径 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}}
多点 ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
多体积 U 2 {\displaystyle U_{2}}
多曲面 F 1 U 2 {\displaystyle \mathbf {F} _{1}U_{2}}
多路径 ∇ × ( F 1 U 2 ) = ( ∇ × F 1 ) U 2 − F 1 × ( ∇ U 2 ) {\displaystyle \nabla \times (\mathbf {F} _{1}U_{2})=(\nabla \times \mathbf {F} _{1})U_{2}-\mathbf {F} _{1}\times (\nabla U_{2})}
多体积 U 1 {\displaystyle U_{1}}
多体积 U 2 {\displaystyle U_{2}}
多体积 U 1 U 2 {\displaystyle U_{1}U_{2}}
多曲面 ∇ ( U 1 U 2 ) = ( ∇ U 1 ) U 2 + U 1 ( ∇ U 2 ) {\displaystyle \nabla (U_{1}U_{2})=(\nabla U_{1})U_{2}+U_{1}(\nabla U_{2})}
积分恒等式
简单结构
多结构
积分恒等式
恒等式名称
简单路径 C {\displaystyle C} ,起点为 C ( 0 ) {\displaystyle C(0)} ,终点为 C ( 1 ) {\displaystyle C(1)}
多体积 U {\displaystyle U}
∫ q ∈ C ( ∇ U ) ⋅ d q = U ( C ( 1 ) ) − U ( C ( 0 ) ) {\displaystyle \int _{\mathbf {q} \in C}(\nabla U)\cdot d\mathbf {q} =U(C(1))-U(C(0))}
梯度定理
简单体积 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多路径 J {\displaystyle \mathbf {J} }
∭ q ∈ Ω ( ∇ ⋅ J ) d V = ∬ q ∈ σ J ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} )dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} \cdot d\mathbf {S} }
高斯散度定理
简单曲面 σ {\displaystyle \sigma } ,具有逆时针方向边界 ∂ σ {\displaystyle \partial \sigma }
多曲面 F {\displaystyle \mathbf {F} }
∬ q ∈ σ ( ∇ × F ) ⋅ d S = ∫ q ∈ ∂ σ F ⋅ d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} )\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} \cdot d\mathbf {q} }
斯托克斯定理
简单曲面 σ {\displaystyle \sigma } ,具有逆时针方向边界 ∂ σ {\displaystyle \partial \sigma }
多体积 U {\displaystyle U}
∬ q ∈ σ ( ∇ U ) × d S = − ∫ q ∈ ∂ σ U d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla U)\times d\mathbf {S} =-\int _{\mathbf {q} \in \partial \sigma }Ud\mathbf {q} }
未命名
简单体积 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多曲面 F {\displaystyle \mathbf {F} }
∭ q ∈ Ω ( ∇ × F ) d V = − ∬ q ∈ σ F × d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} )dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} \times d\mathbf {S} }
未命名
简单体积 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多体积 U {\displaystyle U}
∭ q ∈ Ω ( ∇ U ) d V = ∬ q ∈ σ U d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla U)dV=\iint _{\mathbf {q} \in \sigma }Ud\mathbf {S} }
未命名