第七章:消除某些限制。微分方程    G  =  0      {\displaystyle G=0}     
96  曲线可能由有限个正则轨迹组成,而不是单个正则轨迹。97      F      {\displaystyle F}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}         G  =  0      {\displaystyle G=0}     98  前一篇文章中给出的结果的解释。99  总结。100  第一章问题 I 的微分方程解。101 ,102  不连续解。103  对于问题 II,文章 9 中求解的方程     G  =  0      {\displaystyle G=0}     104  两个固定点必须位于摆线的同一个环上。105  经过两点可以画出一条且只有一条摆线环,它不包含尖点。106  问题 III.  表面上的最短线问题。107  用不同的方法推导出相同的结果。108  问题 IV.  提供最小阻力的旋转曲面。109 ,110  对于第一章问题 IV,方程     G  =  0      {\displaystyle G=0}     第 96 条      x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}         G  =  0      {\displaystyle G=0}         A  C      {\displaystyle AC}         C  B      {\displaystyle CB}         A  B      {\displaystyle AB}         C  B      {\displaystyle CB}         A  C      {\displaystyle AC}     
如上所述,我们得出结论,这部分曲线必须满足微分方程    G  =  0      {\displaystyle G=0}         C  B      {\displaystyle CB}     
我们现在可以取消曲线由一个正则轨迹组成的限制,并假设它由有限个正则轨迹组成。
第 97 条     F      {\displaystyle F}         x      {\displaystyle x}            ∂  F     ∂  x        =  0      {\displaystyle {\frac {\partial F}{\partial x}}=0}         G  =  0      {\displaystyle G=0}          G   1      =  0      {\displaystyle G_{1}=0}     
       ∂  F     ∂  x        −    d    d    t           ∂  F     ∂   x  ′          =  0      {\displaystyle {\frac {\partial F}{\partial x}}-{\frac {\text{d}}{{\text{d}}t}}{\frac {\partial F}{\partial x'}}=0}     由此可得
       ∂  F     ∂   x  ′          =    constant        {\displaystyle {\frac {\partial F}{\partial x'}}={\text{ constant}}}     此常数与    t      {\displaystyle t}            ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}         G  =  0      {\displaystyle G=0}     
即使      x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}         G  =  0      {\displaystyle G=0}            ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}      
如果曲线中存在间断点      t  ′        {\displaystyle t'}          t  ′        {\displaystyle t'}         τ      {\displaystyle \tau }          τ  ′        {\displaystyle \tau '}         τ  …   t  ′        {\displaystyle \tau \ldots t'}          t  ′    …   τ  ′        {\displaystyle t'\ldots \tau '}          t   0      …  τ      {\displaystyle t_{0}\ldots \tau }          τ  ′    …   t   1          {\displaystyle \tau '\ldots t_{1}}         τ  …   τ  ′        {\displaystyle \tau \ldots \tau '}         τ  …   τ  ′        {\displaystyle \tau \ldots \tau '}         τ      {\displaystyle \tau }          τ  ′        {\displaystyle \tau '}          t  ′        {\displaystyle t'}     
积分的变化
    I  =   ∫    t   0          t   1          F  (  x  ,  y  ,   x  ′    ,   y  ′    )      d    t      {\displaystyle I=\int _{t_{0}}^{t_{1}}F(x,y,x',y')~{\text{d}}t}     然后仅取决于积分总和的变化
     ∫   τ      t  ′        F  (  x  ,  y  ,   x  ′    ,   y  ′    )      d    t  +   ∫    t  ′        τ  ′        F  (  x  ,  y  ,   x  ′    ,   y  ′    )      d    t      {\displaystyle \int _{\tau }^{t'}F(x,y,x',y')~{\text{d}}t+\int _{t'}^{\tau '}F(x,y,x',y')~{\text{d}}t}     由于此表达式的第一个变分必须消失,我们必然有(第 79 节)
    0  =   ∫   τ      t  ′        G  (   y  ′    ξ  −   x  ′    η  )      d    t  +   ∫    t  ′        τ  ′        G  (   y  ′    ξ  −   x  ′    η  )      d    t  +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]     τ      t  ′        +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]      t  ′       τ          {\displaystyle 0=\int _{\tau }^{t'}G(y'\xi -x'\eta )~{\text{d}}t+\int _{t'}^{\tau '}G(y'\xi -x'\eta )~{\text{d}}t+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{\tau }^{t'}+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{t'}^{\tau }}     由于整个曲线上的     G  =  0      {\displaystyle G=0}     
      [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]     τ      t  ′        +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]      t  ′       τ      =  0      {\displaystyle \left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{\tau }^{t'}+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{t'}^{\tau }=0}     量     ξ      {\displaystyle \xi }         η      {\displaystyle \eta }         τ      {\displaystyle \tau }          τ  ′        {\displaystyle \tau '}     
      [     ∂  F     ∂   x  ′          ]      t  ′       −          {\displaystyle \left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{-}}           [     ∂  F     ∂   x  ′          ]      t  ′       +          {\displaystyle \left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{+}}         τ      {\displaystyle \tau }          τ  ′        {\displaystyle \tau '}          t  ′        {\displaystyle t'}            ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}     上面的表达式变为
     (     [     ∂  F     ∂   x  ′          ]      t  ′       −      −    [     ∂  F     ∂   x  ′          ]      t  ′       +        )    (  ξ   )  ′    +   (     [     ∂  F     ∂   y  ′          ]      t  ′       −      −    [     ∂  F     ∂   y  ′          ]      t  ′       +        )    (  η   )  ′    =  0      {\displaystyle \left(\left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{-}-\left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{+}\right)(\xi )'+\left(\left[{\frac {\partial F}{\partial y'}}\right]_{t'}^{-}-\left[{\frac {\partial F}{\partial y'}}\right]_{t'}^{+}\right)(\eta )'=0}     其中     (  ξ   )  ′        {\displaystyle (\xi )'}         (  η   )  ′        {\displaystyle (\eta )'}         ξ      {\displaystyle \xi }         η      {\displaystyle \eta }          t  ′        {\displaystyle t'}         (  ξ   )  ′        {\displaystyle (\xi )'}         (  η   )  ′        {\displaystyle (\eta )'}     
      [     ∂  F     ∂   x  ′          ]      t  ′       −      =    [     ∂  F     ∂   x  ′          ]      t  ′       +          {\displaystyle \left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{-}=\left[{\frac {\partial F}{\partial x'}}\right]_{t'}^{+}}           [     ∂  F     ∂   y  ′          ]      t  ′       −      =    [     ∂  F     ∂   y  ′          ]      t  ′       +          {\displaystyle \left[{\frac {\partial F}{\partial y'}}\right]_{t'}^{-}=\left[{\frac {\partial F}{\partial y'}}\right]_{t'}^{+}}     也就是说,量        ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}      
这是一个新的必要条件,用于积分     I      {\displaystyle I}         G  =  0      {\displaystyle G=0}     
第 98 条 函数        ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}       为了回答这个问题,我们可以说这些函数的组合具有特殊性质,即,包含      x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}            ∂  F     ∂   x  ′          =      {\displaystyle {\frac {\partial F}{\partial x'}}=}     
第 99 条     I      {\displaystyle I}     
1) 提供最大值或最小值的曲线必须满足微分方程 
    G  ≡      ∂   2      F     ∂  x  ∂   y  ′          −      ∂   2      F     ∂  y  ∂   x  ′          +   F   1       (    x  ′        d     y  ′        d    t        −   y  ′        d     x  ′        d    t          )    =  0      {\displaystyle G\equiv {\frac {\partial ^{2}F}{\partial x\partial y'}}-{\frac {\partial ^{2}F}{\partial y\partial x'}}+F_{1}\left(x'{\frac {{\text{d}}y'}{{\text{d}}t}}-y'{\frac {{\text{d}}x'}{{\text{d}}t}}\right)=0}     或者,等价地,这两个方程 
     G   2      ≡     ∂  F     ∂  x        −    d    d    t         (     ∂  F     ∂   x  ′          )    =  0      {\displaystyle G_{2}\equiv {\frac {\partial F}{\partial x}}-{\frac {\text{d}}{{\text{d}}t}}\left({\frac {\partial F}{\partial x'}}\right)=0}          G   2      ≡     ∂  F     ∂  y        −    d    d    t         (     ∂  F     ∂   y  ′          )    =  0      {\displaystyle G_{2}\equiv {\frac {\partial F}{\partial y}}-{\frac {\text{d}}{{\text{d}}t}}\left({\frac {\partial F}{\partial y'}}\right)=0}     2) 函数     F      {\displaystyle F}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}      
为了确定通过方程     G  =  0      {\displaystyle G=0}         Δ  I      {\displaystyle \Delta I}     
\begin{center}第一章问题中微分方程 G=0 的解
第 100 条 
      S   2  π        =   ∫    t   0          t   1          y     x   ′   2        +   y   ′   2                d    t      {\displaystyle {\frac {S}{2\pi }}=\int _{t_{0}}^{t_{1}}y{\sqrt {x'^{2}+y'^{2}}}~{\text{d}}t}          [1]        {\displaystyle \qquad {\text{[1]}}}     因此
    F  =  y     x   ′   2        +   y   ′   2                {\displaystyle F=y{\sqrt {x'^{2}+y'^{2}}}}          [2]        {\displaystyle \qquad {\text{[2]}}}     因此
       ∂  F     ∂   x  ′          =     y   x  ′        x   ′   2        +   y   ′   2                  {\displaystyle {\frac {\partial F}{\partial x'}}={\frac {yx'}{\sqrt {x'^{2}+y'^{2}}}}}            ∂  F     ∂   y  ′          =     y   y  ′        x   ′   2        +   y   ′   2                  {\displaystyle \qquad {\frac {\partial F}{\partial y'}}={\frac {yy'}{\sqrt {x'^{2}+y'^{2}}}}}          [3]        {\displaystyle \qquad {\text{[3]}}}     由此可见,       ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}         x  (  t  )      {\displaystyle x(t)}         y  (  t  )      {\displaystyle y(t)}            ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}         y  =  0      {\displaystyle y=0}            x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}         y      {\displaystyle y}     
由于     F      {\displaystyle F}         x      {\displaystyle x}     
     G   1      =  0      {\displaystyle G_{1}=0}            ∂  F     ∂   x  ′          =     y   x  ′        x   ′   2        +   y   ′   2              =  β      {\displaystyle {\frac {\partial F}{\partial x'}}={\frac {yx'}{\sqrt {x'^{2}+y'^{2}}}}=\beta }          [4]        {\displaystyle \qquad {\text{[4]}}}     其中     β      {\displaystyle \beta }     
     y   2        (      d    x      d    t        )     2      =   β   2       [     (      d    x      d    t        )     2      +    (      d    y      d    t        )     2        ]        {\displaystyle y^{2}\left({\frac {{\text{d}}x}{{\text{d}}t}}\right)^{2}=\beta ^{2}\left[\left({\frac {{\text{d}}x}{{\text{d}}t}}\right)^{2}+\left({\frac {{\text{d}}y}{{\text{d}}t}}\right)^{2}\right]}          [5]        {\displaystyle \qquad {\text{[5]}}}     该方程的解是悬链线
    x  =  α  +  β  t      {\displaystyle x=\alpha +\beta t}         y  =    β  2      (   e   t      +   e   −  t      )  ,      {\displaystyle \qquad y={\frac {\beta }{2}}(e^{t}+e^{-t}),}          [6]        {\displaystyle \qquad {\text{[6]}}}     其中     α      {\displaystyle \alpha }     
第 101 条 不连续解 。如果我们取弧     s      {\displaystyle s}         t      {\displaystyle t}     
    y      d    x      d    s        =  β      {\displaystyle y{\frac {{\text{d}}x}{{\text{d}}s}}=\beta }     Suppose that     β  =  0      {\displaystyle \beta =0}          t   0      …   t   1          {\displaystyle t_{0}\ldots t_{1}}         y  ≠  0      {\displaystyle y\neq 0}          P   0          {\displaystyle P_{0}}             d    x      d    s        =  cos    (  ϕ  )  =  0      {\displaystyle {\frac {{\text{d}}x}{{\text{d}}s}}=\cos(\phi )=0}         ϕ      {\displaystyle \phi }         X      {\displaystyle X}         cos    (  ϕ  )      {\displaystyle \cos(\phi )}         y  =  0      {\displaystyle y=0}          P   0       M   0          {\displaystyle P_{0}M_{0}}          M   0          {\displaystyle M_{0}}             d    x      d    s            {\displaystyle {\frac {{\text{d}}x}{{\text{d}}s}}}          P   1          {\displaystyle P_{1}}          M   0          {\displaystyle M_{0}}          M   1          {\displaystyle M_{1}}          P   0       M   0       M   1       P   1          {\displaystyle P_{0}M_{0}M_{1}P_{1}}         β  =  0      {\displaystyle \beta =0}          P   0       M   0          {\displaystyle P_{0}M_{0}}          P   1       M   1          {\displaystyle P_{1}M_{1}}     i.e. ,     x  =   x   0          {\displaystyle x=x_{0}}         x  =   x   1          {\displaystyle x=x_{1}}         G  =  0      {\displaystyle G=0}          y  ′    G  =   G   1          {\displaystyle y'G=G_{1}}          G   1      =  0      {\displaystyle G_{1}=0}         y  ≠  0      {\displaystyle y\neq 0}         G  ≠  0      {\displaystyle G\neq 0}          M   0       M   1          {\displaystyle M_{0}M_{1}}     
第 102 条     X      {\displaystyle X}     正 的时,这一点就一目了然。这个问题是第 79 条的特殊情况。
第一变分可以分解成几个部分(参见第 79 条和第 81 条)
    δ  I  =  −   ∫    M   0          P   0          G   w   N          d    s  +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]      M   0          P   0          −   ∫    M   1          M   0          G   w   N          d    s  +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]      M   1          M   0          −   ∫   P  −  1      M   1          G   w   N          d    s  +    [      ∂  F     ∂   x  ′          ξ  +     ∂  F     ∂   y  ′          η    ]      P   1          M   1              {\displaystyle \delta I=-\int _{M_{0}}^{P_{0}}Gw_{N}~{\text{d}}s+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{M_{0}}^{P_{0}}-\int _{M_{1}}^{M_{0}}Gw_{N}~{\text{d}}s+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{M_{1}}^{M_{0}}-\int _{P-1}^{M_{1}}Gw_{N}~{\text{d}}s+\left[{\frac {\partial F}{\partial x'}}\xi +{\frac {\partial F}{\partial y'}}\eta \right]_{P_{1}}^{M_{1}}}     因为,现在所有边界项都为零
       ∂  F     ∂   x  ′          =      y  ′    x      x   ′   2        +   y   ′   2                  {\displaystyle {\frac {\partial F}{\partial x'}}={\frac {y'x}{\sqrt {x'^{2}+y'^{2}}}}}            ∂  F     ∂   y  ′          =     y   y  ′        x   ′   2        +   y   ′   2                  {\displaystyle \qquad {\frac {\partial F}{\partial y'}}={\frac {yy'}{\sqrt {x'^{2}+y'^{2}}}}}     因此,两者在点      M   0          {\displaystyle M_{0}}          M   1          {\displaystyle M_{1}}         ξ      {\displaystyle \xi }         η      {\displaystyle \eta }          P   0          {\displaystyle P_{0}}          P   1          {\displaystyle P_{1}}         G  =  0      {\displaystyle G=0}          d    s      {\displaystyle {\text{d}}s}          w   N          {\displaystyle w_{N}}         δ  I      {\displaystyle \delta I}     正 。
当任意常数     <  β  ≠  0      {\displaystyle <\beta \neq 0}         X      {\displaystyle X}     
第 103 条 
    T  =   ∫    t   0          t   1              x   ′   2        +   y   ′   2           4  g  y  +   α   2                d    t      {\displaystyle T=\int _{t_{0}}^{t_{1}}{\frac {\sqrt {x'^{2}+y'^{2}}}{\sqrt {4gy+\alpha ^{2}}}}~{\text{d}}t}          [1]        {\displaystyle \qquad {\text{[1]}}}     为了使此表达式实际上表达下降时间(时间和因此增量      d    t      {\displaystyle {\text{d}}t}           4  g  y  +   α   2              {\displaystyle {\sqrt {4gy+\alpha ^{2}}}}            x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}          T   0      …   t   1          {\displaystyle T_{0}\ldots t_{1}}     
然而,如果我们用     x      {\displaystyle x}         y      {\displaystyle y}         t      {\displaystyle t}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}          t   0      …   t   1          {\displaystyle t_{0}\ldots t_{1}}         t      {\displaystyle t}         t      {\displaystyle t}         x      {\displaystyle x}         y      {\displaystyle y}     
假设这种情况发生在     t  =   t  ′        {\displaystyle t=t'}          x   0          {\displaystyle x_{0}}          y   0          {\displaystyle y_{0}}     
    x  =   x   0      +  a  (  t  −   t  ′     )   m      +  ⋯      {\displaystyle x=x_{0}+a(t-t')^{m}+\cdots }         y  =   y   0      +  (  t  −   t  ′     )   m      +  ⋯      {\displaystyle \qquad y=y_{0}+(t-t')^{m}+\cdots }     其中     m  ≥  2      {\displaystyle m\geq 2}         a      {\displaystyle a}         b      {\displaystyle b}     
那么有
     x   ′   2        +   y   ′   2        =   m   2      (   a   2      +   b   2      )  (  t  −   t  ′     )   2  (  m  −  1  )      +  ⋯      {\displaystyle x'^{2}+y'^{2}=m^{2}(a^{2}+b^{2})(t-t')^{2(m-1)}+\cdots }     以及
       x   ′   2        +   y   ′   2            =  m     a   2      +   b   2          (  t  −   t  ′     )   m  −  1      +  ⋯      {\displaystyle {\sqrt {x'^{2}+y'^{2}}}=m{\sqrt {a^{2}+b^{2}}}(t-t')^{m-1}+\cdots }     这里我们假设        a   2      +   b   2              {\displaystyle {\sqrt {a^{2}+b^{2}}}}     
如果现在     m      {\displaystyle m}         t  −   t  ′        {\displaystyle t-t'}            x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}     
相反,如果     m      {\displaystyle m}          x   0          {\displaystyle x_{0}}          y   0          {\displaystyle y_{0}}     尖点 ,因为这里        x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}         t  >   t  ′        {\displaystyle t>t'}         t  <   t  ′        {\displaystyle t<t'}     
因此,如果上面的积分要表示时间,       x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}         t      {\displaystyle t}     尖点 后被设为级数的相反值。因此,我们只考虑没有奇点的曲线的一部分。
在问题中,我们经常需要做出这样的限制,否则积分就没有确切的意义。因此,有了这个假设,       x   ′   2        +   y   ′   2                {\displaystyle {\sqrt {x'^{2}+y'^{2}}}}     
我们可以写成
    F  =      x   ′   2        +   y   ′   2           4  g  y  +   α   2                {\displaystyle F={\frac {\sqrt {x'^{2}+y'^{2}}}{\sqrt {4gy+\alpha ^{2}}}}}          [2]        {\displaystyle \qquad {\text{[2]}}}     因此
       ∂  F     ∂   x  ′          =    1   4  g  y  +   α   2               x  ′      x   ′   2        +   y   ′   2                  {\displaystyle {\frac {\partial F}{\partial x'}}={\frac {1}{\sqrt {4gy+\alpha ^{2}}}}{\frac {x'}{\sqrt {x'^{2}+y'^{2}}}}}            ∂  F     ∂   y  ′          =    1   4  g  y  +   α   2               y  ′      x   ′   2        +   y   ′   2                  {\displaystyle \qquad {\frac {\partial F}{\partial y'}}={\frac {1}{\sqrt {4gy+\alpha ^{2}}}}{\frac {y'}{\sqrt {x'^{2}+y'^{2}}}}}          [3]        {\displaystyle \qquad {\text{[3]}}}     从这里我们可以得出结论,与第一个例子类似,       ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}         x      {\displaystyle x}         y      {\displaystyle y}            ∂  F     ∂   x  ′              {\displaystyle {\frac {\partial F}{\partial x'}}}            ∂  F     ∂   y  ′              {\displaystyle {\frac {\partial F}{\partial y'}}}           4  g  y  +   α   2              {\displaystyle {\sqrt {4gy+\alpha ^{2}}}}     
同样在这里     F      {\displaystyle F}         x      {\displaystyle x}          G   1      =  0      {\displaystyle G_{1}=0}     
       ∂  F     ∂   x  ′          =    1   4  g  y  +   α   2               x  ′      x   ′   2        +   y   ′   2              =  C      {\displaystyle {\frac {\partial F}{\partial x'}}={\frac {1}{\sqrt {4gy+\alpha ^{2}}}}{\frac {x'}{\sqrt {x'^{2}+y'^{2}}}}=C}          [4]        {\displaystyle \qquad {\text{[4]}}}     其中     C      {\displaystyle C}     
如果     C      {\displaystyle C}         C      {\displaystyle C}         C      {\displaystyle C}           4  g  y  +   α   2              {\displaystyle {\sqrt {4gy+\alpha ^{2}}}}         ∞      {\displaystyle \infty }            x  ′      x   ′   2        +   y   ′   2              =  cos    (  α  )      {\displaystyle {\frac {x'}{\sqrt {x'^{2}+y'^{2}}}}=\cos(\alpha )}         C      {\displaystyle C}     
从 [4] 可以看出
     d     x   2      =   C   2      (  4  g  y  +   α   2      )  (   d     x   2      +   d     y   2      )      {\displaystyle {\text{d}}x^{2}=C^{2}(4gy+\alpha ^{2})({\text{d}}x^{2}+{\text{d}}y^{2})}     或者,如果我们将     4  g      {\displaystyle 4g}     
       α   2       4  g        =  a      {\displaystyle {\frac {\alpha ^{2}}{4g}}=a}         4  g   C   2      =   c   2          {\displaystyle 4gC^{2}=c^{2}}     我们有
     d     x   2      =   c   2      (  y  +  a  )  (   d     x   2      +   d     y   2      )      {\displaystyle {\text{d}}x^{2}=c^{2}(y+a)({\text{d}}x^{2}+{\text{d}}y^{2})}     因此
     d    x  =     c  (  y  +  a  )   d    y     (  y  +  a  )  [  1  −   c   2      (  y  +  1  )  ]  ]            {\displaystyle {\text{d}}x={\frac {c(y+a){\text{d}}y}{\sqrt {(y+a)[1-c^{2}(y+1)]]}}}}          [5]        {\displaystyle \qquad {\text{[5]}}}     为了进行最后的积分,写出
     d    ϕ  =     c   d    y     (  y  +  a  )  [  1  −   c   2      (  y  +  a  )  ]            {\displaystyle {\text{d}}\phi ={\frac {c{\text{d}}y}{\sqrt {(y+a)[1-c^{2}(y+a)]}}}}          [6]        {\displaystyle \qquad {\text{[6]}}}     因此
     d    x  =  (  y  +  a  )   d    ϕ      {\displaystyle {\text{d}}x=(y+a){\text{d}}\phi }         [   5   a      ]      {\displaystyle \qquad [5^{\text{a}}]}     在     d    ϕ      {\displaystyle {\text{d}}\phi }     
    2   c   2      (  y  +  a  )  =  1  −  ξ      {\displaystyle 2c^{2}(y+a)=1-\xi }         [  7  ]      {\displaystyle \qquad [7]}     那么有
    2  [  1  −   c   2      (  y  +  a  )  ]  =  1  +  ξ      {\displaystyle 2[1-c^{2}(y+a)]=1+\xi }         [  8  ]      {\displaystyle \qquad [8]}     以及
    2   c   2       d    y  =  −   d    ξ      {\displaystyle 2c^{2}{\text{d}}y=-{\text{d}}\xi }         [  9  ]      {\displaystyle \qquad [9]}     因此
     d    ϕ  =  −      d    ξ     1  −   ξ   2                {\displaystyle {\text{d}}\phi =-{\frac {{\text{d}}\xi }{\sqrt {1-\xi ^{2}}}}}         [  10  ]      {\displaystyle \qquad [10]}     因此
    ξ  =  cos    (  ϕ  )      {\displaystyle \xi =\cos(\phi )}         [  11  ]      {\displaystyle \qquad [11]}     这里可以省略积分常数,因为    ϕ      {\displaystyle \phi }     
因此,
    y  +  a  =    1   2   c   2            (  1  −  cos    (  ϕ  )  )      {\displaystyle y+a={\frac {1}{2c^{2}}}(1-\cos(\phi ))}          5   a          {\displaystyle 5^{\text{a}}}         x  +   x   0      =    1   2   c   2            (  ϕ  −  sin    (  ϕ  )  )      {\displaystyle x+x_{0}={\frac {1}{2c^{2}}}(\phi -\sin(\phi ))}         [  12  ]      {\displaystyle \qquad [12]}          {\displaystyle }     这些方程表示一个摆线 。
积分常数     x   0          {\displaystyle x_{0}}         c      {\displaystyle c}         A      {\displaystyle A}         B      {\displaystyle B}         x      {\displaystyle x}         y      {\displaystyle y}         ϕ      {\displaystyle \phi }         y      {\displaystyle y}          ϕ   2          {\displaystyle \phi ^{2}}         x      {\displaystyle x}         ϕ      {\displaystyle \phi }         ϕ  =  0      {\displaystyle \phi =0}         ϕ  =  2  π  ,  4  π  ,  …      {\displaystyle \phi =2\pi ,4\pi ,\ldots }     
    A      {\displaystyle A}         B      {\displaystyle B}     
如果我们通过点    −   x   0          {\displaystyle -x_{0}}         −  a      {\displaystyle -a}         1   /    (  2   c   2      )      {\displaystyle 1/(2c^{2})}         −   x   0          {\displaystyle -x_{0}}         −  a      {\displaystyle -a}         X      {\displaystyle X}         A      {\displaystyle A}     
第 104 条     A      {\displaystyle A}         B      {\displaystyle B}         α      {\displaystyle \alpha }     
则摆线的方程为
    x  =  r  (  ϕ  −  sin    (  ϕ  )  )      {\displaystyle x=r(\phi -\sin(\phi ))}         y  r  (  1  −  cos    (  ϕ  )  )      {\displaystyle \qquad yr(1-\cos(\phi ))}     其中我们用     r      {\displaystyle r}         1   /    (  2   c   2      )      {\displaystyle 1/(2c^{2})}     
从附图中可以看到摆线弧。取两个位于不同环上的点,它们非常靠近并且关于顶点对称,让我们比较从一个点到另一个点经过顶点所需的时间和沿连接这两个点的直线所需的时间。这两个点的参数可以表示为
     ϕ   0      =  2  π  −   ψ   0          {\displaystyle \phi _{0}=2\pi -\psi _{0}}          ϕ   1      =  2  π  +   ψ   0          {\displaystyle \qquad \phi _{1}=2\pi +\psi _{0}}     经过顶点所需的时间为
    T  =    1   2  g         ∫    t   0          t   1               x   ′   2        +   y   ′   2          y            d    t  =    1   2  g         ∫    s   0          s   1              d    s     y            {\displaystyle T={\frac {1}{\sqrt {2g}}}\int _{t_{0}}^{t_{1}}{\sqrt {\frac {x'^{2}+y'^{2}}{y}}}~{\text{d}}t={\frac {1}{\sqrt {2g}}}\int _{s_{0}}^{s_{1}}{\frac {{\text{d}}s}{\sqrt {y}}}}     现在
     d    x  =  r  (  1  −  cos    (  ϕ  )  )      d    ϕ      {\displaystyle {\text{d}}x=r(1-\cos(\phi ))~{\text{d}}\phi }     以及
     d    y  =  r  sin    (  ϕ  )      d    ϕ      {\displaystyle {\text{d}}y=r\sin(\phi )~{\text{d}}\phi }     所以
     d    s  =     d     x   2      +   d     y   2          =  2  r  sin    (  ϕ   /    2  )      d    ϕ      {\displaystyle {\text{d}}s={\sqrt {{\text{d}}x^{2}+{\text{d}}y^{2}}}=2r\sin(\phi /2)~{\text{d}}\phi }     因此
    T  =    1   2  g         ∫    ϕ   0          ϕ   1             2  r  sin    (  ϕ   /    2  )       r        1  −  cos    (  ϕ  )             d    ϕ  =     r  g         ∫    ϕ   0          ϕ   1           d    ϕ      {\displaystyle T={\frac {1}{\sqrt {2g}}}\int _{\phi _{0}}^{\phi _{1}}{\frac {2r\sin(\phi /2)}{{\sqrt {r}}{\sqrt {1-\cos(\phi )}}}}{\text{d}}\phi ={\sqrt {\frac {r}{g}}}\int _{\phi _{0}}^{\phi _{1}}{\text{d}}\phi }            r  g        (   ϕ   1      −   ϕ   0      )  =     r  g        [  2  π  +   ψ   0      −  2  π  +   ψ   0      ]  =  2     r  g         ψ   0          {\displaystyle {\sqrt {\frac {r}{g}}}(\phi _{1}-\phi _{0})={\sqrt {\frac {r}{g}}}[2\pi +\psi _{0}-2\pi +\psi _{0}]=2{\sqrt {\frac {r}{g}}}\psi _{0}}     从      ϕ   0          {\displaystyle \phi _{0}}          ϕ   1          {\displaystyle \phi _{1}}          [   v      d    x      d    s          ]        {\displaystyle \left[v{\frac {{\text{d}}x}{{\text{d}}s}}\right]}             d    x      d    s        =  sin      ϕ  2          {\displaystyle {\frac {{\text{d}}x}{{\text{d}}s}}=\sin {\frac {\phi }{2}}}          v   2      =  2  g  y      {\displaystyle v^{2}=2gy}     
      [     2  g  r        1  −  cos    (  ϕ  )      sin      ϕ  2        ]      ϕ   0          ϕ   1          =  2    g  r       sin   2           ψ   0      2          {\displaystyle \left[{\sqrt {2gr}}{\sqrt {1-\cos(\phi )}}\sin {\frac {\phi }{2}}\right]_{\phi _{0}}^{\phi _{1}}=2{\sqrt {gr}}\sin ^{2}{\frac {\psi _{0}}{2}}}     从      ϕ   0          {\displaystyle \phi _{0}}          ϕ   1          {\displaystyle \phi _{1}}     
     x   1      −   x   0      =  r  [   ϕ   1      −   ϕ   0      −  sin     ϕ   1      +  sin     ϕ   0      ]  =  2  r  [   ψ   0      −  sin     ψ   0      ]      {\displaystyle x_{1}-x_{0}=r[\phi _{1}-\phi _{0}-\sin \phi _{1}+\sin \phi _{0}]=2r[\psi _{0}-\sin \psi _{0}]}     因此,所需的时间为
     T   1      =     2  r  (   ψ   0      −  sin     ψ   0      )     2    g  r       sin   2        (   ψ   0       /    2  )            {\displaystyle T_{1}={\frac {2r(\psi _{0}-\sin \psi _{0})}{2{\sqrt {gr}}\sin ^{2}(\psi _{0}/2)}}}      因此
       T   1      T      =     2  r  (   ψ   0      −  sin     ψ   0      )     2    g  r       sin   2           ψ   0      2      ⋅  2     r  g         ψ   0            =      ψ   0      −  sin     ψ   0         2   ψ   0       sin   2           ψ   0      2            =        ψ   0     3       3  !        −     ψ   0     5       5  !        +  ⋯     2   ψ   0        [      ψ   0      2      −    1   3  !          (     ψ   0      2      )     3      +  ⋯    ]     2                {\displaystyle {\frac {T_{1}}{T}}={\frac {2r(\psi _{0}-\sin \psi _{0})}{2{\sqrt {gr}}\sin ^{2}{\frac {\psi _{0}}{2}}\cdot 2{\sqrt {\frac {r}{g}}}\psi _{0}}}={\frac {\psi _{0}-\sin \psi _{0}}{2\psi _{0}\sin ^{2}{\frac {\psi _{0}}{2}}}}={\frac {{\frac {\psi _{0}^{3}}{3!}}-{\frac {\psi _{0}^{5}}{5!}}+\cdots }{2\psi _{0}\left[{\frac {\psi _{0}}{2}}-{\frac {1}{3!}}\left({\frac {\psi _{0}}{2}}\right)^{3}+\cdots \right]^{2}}}}     因此,
       T   1      T      <      ψ   0     3       3  !       2   ψ   0        [      ψ   0      2      −    1  6        (     ψ   0      2      )     3      +  ⋯    ]     2                {\displaystyle {\frac {T_{1}}{T}}<{\frac {\frac {\psi _{0}^{3}}{3!}}{2\psi _{0}\left[{\frac {\psi _{0}}{2}}-{\frac {1}{6}}\left({\frac {\psi _{0}}{2}}\right)^{3}+\cdots \right]^{2}}}}     或者
       T   1      T      <    1  3        1    (   1  −     ψ   0     2      24      +  ⋯    )     3              {\displaystyle {\frac {T_{1}}{T}}<{\frac {1}{3}}{\frac {1}{\left(1-{\frac {\psi _{0}^{2}}{24}}+\cdots \right)^{3}}}}     因此,对于     ψ   0          {\displaystyle \psi _{0}}     
     T   1      <  T      {\displaystyle T_{1}<T}     由此可见,包含顶点的粒子路径不能给出最小值。
第 105 条     G  =  0      {\displaystyle G=0}         r      {\displaystyle r}         X      {\displaystyle X}         G  =  0      {\displaystyle G=0}     
现在我们将证明,只有一个这样的摆线能够包含这两个点     A      {\displaystyle A}         B      {\displaystyle B}         A      {\displaystyle A}         B      {\displaystyle B}         D  B  >  A  C      {\displaystyle DB>AC}         r      {\displaystyle r}         X      {\displaystyle X}         O      {\displaystyle O}         O      {\displaystyle O}         A  B      {\displaystyle AB}          A  ′     C  ′        {\displaystyle A'C'}          A  ′     B  ′        {\displaystyle A'B'}          A  ′     B  ′    :   A  ′     C  ′        {\displaystyle A'B':A'C'}          A  ′        {\displaystyle A'}     
那么,对于某个位置,我们必须有
        A  ′     B  ′        A  ′     C  ′          =     A  B     A  C            {\displaystyle {\frac {A'B'}{A'C'}}={\frac {AB}{AC}}}     由于点     A      {\displaystyle A}         B      {\displaystyle B}         A  B      {\displaystyle AB}         A  B      {\displaystyle AB}     
如果      A  ′     B  ′    =  A  B      {\displaystyle A'B'=AB}          A  ′     C  ′    =  A  C      {\displaystyle A'C'=AC}         A      {\displaystyle A}         B      {\displaystyle B}          A  ′     B  ′    ≠  A  B      {\displaystyle A'B'\neq AB}     
接下来选择一个数量      r  ′        {\displaystyle r'}     
    r  :   r  ′    =  A  C  :   A  ′     C  ′        {\displaystyle r:r'=AC:A'C'}     以     O      {\displaystyle O}         r  :   r  ′        {\displaystyle r:r'}     
    x  =   r  ′    (  ϕ  −  sin    ϕ  )      {\displaystyle x=r'(\phi -\sin \phi )}         y  =   r  ′    (  1  −  cos    ϕ  )      {\displaystyle \qquad y=r'(1-\cos \phi )}     这是新的摆线的坐标。
后面的摆线与第一个相似,因为变换使纵坐标      A  ′     C  ′        {\displaystyle A'C'}          A  ′     B  ′        {\displaystyle A'B'}     
       r  ′    r       A  ′     C  ′    =  A  C      {\displaystyle {\frac {r'}{r}}A'C'=AC\qquad }            r  ′    r       A  ′     B  ′    =  A  B      {\displaystyle \qquad {\frac {r'}{r}}A'B'=AB}     这给了我们一个摆线,它对纵坐标     A  C      {\displaystyle AC}         A  B      {\displaystyle AB}     
此外,只有一个摆线满足要求的条件。因为,如果我们已经有了     A  ′     B  ′    =  A  B      {\displaystyle A'B'=AB}          A  ′     C  ′    =  A  C      {\displaystyle A'C'=AC}            r  ′    r       A  ′     B  ′    =  A  B      {\displaystyle {\frac {r'}{r}}A'B'=AB}          r  ′        {\displaystyle r'}          r  ′    =  r      {\displaystyle r'=r}     因此,通过两点     A      {\displaystyle A}         B      {\displaystyle B}         X      {\displaystyle X}      [ 1] 
第 106 条 曲面上最短线问题 。这个问题一般来说是无法解决的,因为微分方程中的变量无法分离,积分也无法进行。只有在少数情况下,人们才能成功地进行积分,从而表示满足微分方程的曲线。
例如,这在平面、球面和所有其他二次曲面情况下已经完成。
作为一个简单的例子,我们将讨论球面上的两点之间的最短线问题。球体的半径被设为 1,球面的方程以以下形式给出:
     x   2      +   y   2      +   z   2      =  1      {\displaystyle x^{2}+y^{2}+z^{2}=1}     现在写成
    x  =  cos    u      {\displaystyle x=\cos u}         y  =  sin    u  cos    v      {\displaystyle y=\sin u\cos v}         z  =∈  u  sin    v      {\displaystyle z=\in u\sin v}         [  1  ]      {\displaystyle \qquad [1]}     那么     u  =      {\displaystyle u=}         v  =      {\displaystyle v=}     
弧微元是
     d    s  =     d     u   2      +   sin   2        u   d     v   2              {\displaystyle {\text{d}}s={\sqrt {{\text{d}}u^{2}+\sin ^{2}u{\text{d}}v^{2}}}}         [  2  ]      {\displaystyle \qquad [2]}     因此,要使最小化的积分是
    L  =   ∫    t   0          t   1             u   ′   2        +   v   ′   2         sin   2        u          d    t      {\displaystyle L=\int _{t_{0}}^{t_{1}}{\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}~{\text{d}}t}         [  3  ]      {\displaystyle \qquad [3]}     所以这里我们有
    F  =     u   ′   2        +   v   ′   2         sin   2        u          {\displaystyle F={\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}}     以及
       ∂  F     ∂   u  ′          =     u  ′      u   ′   2        +   v   ′   2         sin   2        u            {\displaystyle {\frac {\partial F}{\partial u'}}={\frac {u'}{\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}}}            ∂  F     ∂   v  ′          =      v  ′     sin   2        u      u   ′   2        +   v   ′   2         sin   2        u            {\displaystyle \qquad {\frac {\partial F}{\partial v'}}={\frac {v'\sin ^{2}u}{\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}}}         [  5  ]      {\displaystyle \qquad [5]}     由于     F      {\displaystyle F}         v      {\displaystyle v}          G   1      =  0      {\displaystyle G_{1}=0}     
       ∂  F     ∂   v  ′          =      v  ′     sin   2        u      u   ′   2        +   v   ′   2         sin   2        u        =  c      {\displaystyle {\frac {\partial F}{\partial v'}}={\frac {v'\sin ^{2}u}{\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}}=c}     其中     c      {\displaystyle c}     
如果曲线的初始点    A      {\displaystyle A}         u  ≠  0      {\displaystyle u\neq 0}          v  ′    =  0      {\displaystyle v'=0}         c      {\displaystyle c}         v      {\displaystyle v}         A      {\displaystyle A}         B      {\displaystyle B}     
如果不是这种情况,那么总是    c  ≠  0      {\displaystyle c\neq 0}         c  <  1      {\displaystyle c<1}         sin    c      {\displaystyle \sin c}         c      {\displaystyle c}     
        v  ′     sin   2        u      u   ′   2        +   v   ′   2         sin   2        u        =  sin    c      {\displaystyle {\frac {v'\sin ^{2}u}{\sqrt {u'^{2}+v'^{2}\sin ^{2}u}}}=\sin c}         [  6  ]      {\displaystyle \qquad [6]}     或者
     d    v  =     sin    c      d    u     sin    u     sin   2        u  −  sin    c                {\displaystyle {\text{d}}v={\frac {\sin c~{\text{d}}u}{\sin u{\sqrt {\sin ^{2}u-\sin c}}}}}          [  7  ]      {\displaystyle \qquad [7]}     如果我们写
    cos    u  =  cos    c  cos    w      {\displaystyle \cos u=\cos c\cos w}         [  8  ]      {\displaystyle \qquad [8]}     那么是
     d    v  =     sin    c      d    w     1  −   cos   2        c   cos   2        w            {\displaystyle {\text{d}}v={\frac {\sin c~{\text{d}}w}{1-\cos ^{2}c\cos ^{2}w}}}     由于 1 可以被      sin   2        w  +   cos   2        w      {\displaystyle \sin ^{2}w+\cos ^{2}w}     
     d    v  =     sin    c      d    w      sin   2        w  +   cos   2        w   sin   2        c        =     sin    c      d    w      cos   2        w            sin   2        c  +   tan   2        w        =      d       tan    w     sin    c           1  +      tan   2        w      sin   2        c                  {\displaystyle {\text{d}}v={\frac {\sin c~{\text{d}}w}{\sin ^{2}w+\cos ^{2}w\sin ^{2}c}}={\frac {\sin c{\frac {{\text{d}}w}{\cos ^{2}w}}}{\sin ^{2}c+\tan ^{2}w}}={\frac {{\text{d}}{\frac {\tan w}{\sin c}}}{1+{\frac {\tan ^{2}w}{\sin ^{2}c}}}}}     因此
    v  −  β  =   tan   −  1         (     tan    w     sin    c        )        {\displaystyle v-\beta =\tan ^{-1}\left({\frac {\tan w}{\sin c}}\right)}     其中     β      {\displaystyle \beta }     
由此可得
    tan    (  v  −  β  )  =     tan    w     sin    c            {\displaystyle \tan(v-\beta )={\frac {\tan w}{\sin c}}}         [  9  ]      {\displaystyle \qquad [9]}     通过 [8] 消去     w      {\displaystyle w}     
    tan    u  cos    (  v  −  β  )  =  tan    c      {\displaystyle \tan u\cos(v-\beta )=\tan c}         [  10  ]      {\displaystyle \qquad [10]}     这是我们正在寻找的曲线方程,用球坐标     u      {\displaystyle u}         v      {\displaystyle v}     
为了更仔细地研究它们的含义,我们可以通过弧长     s      {\displaystyle s}         u      {\displaystyle u}         v      {\displaystyle v}         s      {\displaystyle s}     
通过 [7],表达式 [2] 变为
     d    s  =     sin    u      d    u      sin   2        u  −   sin   2        c            {\displaystyle {\text{d}}s={\frac {\sin u~{\text{d}}u}{\sqrt {\sin ^{2}u-\sin ^{2}c}}}}     并且,由于替换了 [8],它变为
     d    s  =   d    w      {\displaystyle {\text{d}}s={\text{d}}w}     因此,如果     b      {\displaystyle b}     
    s  −  b  =  w      {\displaystyle s-b=w}         [  11  ]      {\displaystyle \qquad [11]}     因此,从公式 [8] 和 [9] 中,我们得到以下公式
    cos    u  =  cos    c  cos    (  s  −  b  )      {\displaystyle \cos u=\cos c\cos(s-b)}         cot    (  v  −  β  )  =  sin    c  cot    (  s  −  b  )      {\displaystyle \qquad \cot(v-\beta )=\sin c\cot(s-b)}         [  12  ]      {\displaystyle \qquad [12]}     但这些关系存在于直角球面三角形的边和角之间。
如果我们考虑从北极点画出的子午线,它与我们正在寻找的曲线垂直相交,那么这条子午线与曲线和任何其他子午线形成一个三角形,上述关系可以应用于这个三角形。
因此,满足微分方程的曲线本身必须是大圆的一部分。积分常数     c      {\displaystyle c}         b      {\displaystyle b}         β      {\displaystyle \beta }         A      {\displaystyle A}         B      {\displaystyle B}     
几何解释是:    c      {\displaystyle c}         u  =  0      {\displaystyle u=0}         s  −  b      {\displaystyle s-b}         v  −  β      {\displaystyle v-\beta }     
因此,如果我们假设零子午线穿过     A      {\displaystyle A}         b      {\displaystyle b}         A      {\displaystyle A}         β      {\displaystyle \beta }     
第 107 条     G  =  0      {\displaystyle G=0}     
由于
     F   1       u   ′   2        =      ∂   2      F     ∂   v   ′   2                  {\displaystyle F_{1}u'^{2}={\frac {\partial ^{2}F}{\partial v'^{2}}}}     我们有
     F   1      =      sin   2        u     (   u   ′   2        +   v   ′   2         sin   2        u   )   3   /    2                {\displaystyle F_{1}={\frac {\sin ^{2}u}{(u'^{2}+v'^{2}\sin ^{2}u)^{3/2}}}}     将此值代入
    G  ≡      ∂   2      F     ∂  v  ∂   u  ′          −      ∂   2      F     ∂  u  ∂   v  ′          +   F   1      (   v  ′     u  ″    −   u  ′     v  ″    )  =  0      {\displaystyle G\equiv {\frac {\partial ^{2}F}{\partial v\partial u'}}-{\frac {\partial ^{2}F}{\partial u\partial v'}}+F_{1}(v'u''-u'v'')=0}     使此表达式变为
    −  [  2  cos    u   u   ′   2         v  ′    +   sin   2        u  cos    u   v   ′   3        ]  +  sin    u  (   v  ′     u  ″    −   u  ′     v  ″    )  =  0      {\displaystyle -[2\cos uu'^{2}v'+\sin ^{2}u\cos uv'^{3}]+\sin u(v'u''-u'v'')=0}     或者
        d    v      d    u         [   2  +   sin   2        u    (      d    v      d    u        )     2        ]    cos    u  +  sin    u       d     2      v      d     u   2            =  0      {\displaystyle {\frac {{\text{d}}v}{{\text{d}}u}}\left[2+\sin ^{2}u\left({\frac {{\text{d}}v}{{\text{d}}u}}\right)^{2}\right]\cos u+\sin u{\frac {{\text{d}}^{2}v}{{\text{d}}u^{2}}}=0}     在此方程中写
    1  )  w  =  sin    u      d    v      d    u            {\displaystyle 1)\qquad w=\sin u{\frac {{\text{d}}v}{{\text{d}}u}}}     我们有
    cot    u  (  w  +   w   3      )  +      d    w      d    u        =  0      {\displaystyle \cot u(w+w^{3})+{\frac {{\text{d}}w}{{\text{d}}u}}=0}     或者
    2  )      d    w     w  +   w   3            +  cot    u      d    u  =  0      {\displaystyle 2)\qquad {\frac {{\text{d}}w}{w+w^{3}}}+\cot u~{\text{d}}u=0}     对最后一个方程进行积分,得到
    ln     (     w   1  +   w   2            sin    u    )    =  c      {\displaystyle \ln \left({\frac {w}{\sqrt {1+w^{2}}}}\sin u\right)=c}     因此
    3  )   w   2       sin   2        u  =   C   2      (  1  +   w   2      )      {\displaystyle 3)\qquad w^{2}\sin ^{2}u=C^{2}(1+w^{2})}     假设     A      {\displaystyle A}         u      {\displaystyle u}         A      {\displaystyle A}         v      {\displaystyle v}         B      {\displaystyle B}     
因此,对于所有通过     A      {\displaystyle A}         G  =  0      {\displaystyle G=0}         C  =  0      {\displaystyle C=0}         sin    u  =  0      {\displaystyle \sin u=0}         u  =  0      {\displaystyle u=0}         w  =  0      {\displaystyle w=0}     
    sin    u      d    v      d    u        =  0      {\displaystyle \sin u{\frac {{\text{d}}v}{{\text{d}}u}}=0}     或者
    v  =      {\displaystyle v=}     因此,如上所述,    A      {\displaystyle A}         B      {\displaystyle B}         A      {\displaystyle A}         C  ≠  0      {\displaystyle C\neq 0}     
     d     s   2      =   d     u   2      +   sin   2        u   d     v   2      =   d     u   2      [  1  +   w   2      ]      {\displaystyle {\text{d}}s^{2}={\text{d}}u^{2}+\sin ^{2}u{\text{d}}v^{2}={\text{d}}u^{2}[1+w^{2}]}     或者
     d    s  =  ±     sin    u      d    u      sin   2        u  −   sin   2        C            {\displaystyle {\text{d}}s=\pm {\frac {\sin u~{\text{d}}u}{\sqrt {\sin ^{2}u-\sin ^{2}C}}}}          sin   2        C      {\displaystyle \sin ^{2}C}          C   2          {\displaystyle C^{2}}     以及
     d    v  =     sin    C      d    u     sin    (  u  )     sin   2        u  −   sin   2        C                {\displaystyle {\text{d}}v={\frac {\sin C~{\text{d}}u}{\sin(u){\sqrt {\sin ^{2}u-\sin ^{2}C}}}}}     写成     cos    u  =  cos    C  cos    t      {\displaystyle \cos u=\cos C\cos t}     
    cos    u  =  cos    C  cos    (  s  −  b  )      {\displaystyle \cos u=\cos C\cos(s-b)}         cot    (  v  −  β  )  =  sin    C  cot    (  s  −  b  )      {\displaystyle \qquad \cot(v-\beta )=\sin C\cot(s-b)}     
第108条 提供最小阻力的旋转曲面。  要解决这个问题,我们看到(第12条)积分
    I  =   ∫    t   0          t   1             x   x   ′   3            x   ′   2        +   y   ′   2                  d    t      {\displaystyle I=\int _{t_{0}}^{t_{1}}{\frac {xx'^{3}}{x'^{2}+y'^{2}}}~{\text{d}}t}     必须是最小值。
我们这里有
    F  =     x   x   ′   3            x   ′   2        +   y   ′   2                  {\displaystyle F={\frac {xx'^{3}}{x'^{2}+y'^{2}}}}     我们看到     F      {\displaystyle F}          x  ′        {\displaystyle x'}          y  ′        {\displaystyle y'}     
我们可以从以下关系式确定函数     F  −  1      {\displaystyle F-1}     
        ∂   2      F     ∂   x  ′    ∂   y  ′          =  −   x  ′     y  ′     F   1          {\displaystyle {\frac {\partial ^{2}F}{\partial x'\partial y'}}=-x'y'F_{1}}     可以看出
     F   1      =     2  x   x  ′    (  3   y   ′   2        −   x   ′   2        )     (   x   ′   2        +   y   ′   2         )   3                {\displaystyle F_{1}={\frac {2xx'(3y'^{2}-x'^{2})}{(x'^{2}+y'^{2})^{3}}}}     我们可以取     x      {\displaystyle x}         x      {\displaystyle x}         t      {\displaystyle t}          x  ′        {\displaystyle x'}     
因此,     F   1          {\displaystyle F_{1}}         3   y   ′   2        −   x   ′   2            {\displaystyle 3y'^{2}-x'^{2}}         3   sin   2        λ  −   cos   2        λ      {\displaystyle 3\sin ^{2}\lambda -\cos ^{2}\lambda }         λ      {\displaystyle \lambda }         X      {\displaystyle X}     
     F   1          {\displaystyle F_{1}}     正数 ,如果      |    tan    λ   |    >    1   3            {\displaystyle |\tan \lambda |>{\frac {1}{\sqrt {3}}}}     负数 ,如果      |    tan    λ   |    <    1   3            {\displaystyle |\tan \lambda |<{\frac {1}{\sqrt {3}}}}     
我们将在后面(第 117 条)看到,     F   1          {\displaystyle F_{1}}          |    tan    λ   |        {\displaystyle |\tan \lambda |}           1   3            {\displaystyle {\frac {1}{\sqrt {3}}}}          x  ′        {\displaystyle x'}         X      {\displaystyle X}          30   ∘          {\displaystyle 30^{\circ }}     
第 109 条     G  =  0      {\displaystyle G=0}     
由于     F      {\displaystyle F}         y      {\displaystyle y}     
    −   x  ′    G  =   G   2      ≡     ∂  F     ∂  y        −    d    d    t           ∂  F     ∂   y  ′          =  0      {\displaystyle -x'G=G_{2}\equiv {\frac {\partial F}{\partial y}}-{\frac {\text{d}}{{\text{d}}t}}{\frac {\partial F}{\partial y'}}=0}     我们立刻有
       ∂  F     ∂   y  ′          =      {\displaystyle {\frac {\partial F}{\partial y'}}=}     或者
    −     2  x   x   ′   3         y  ′       (   x   ′   2        +   y   ′   2         )   2            =  C      {\displaystyle -{\frac {2xx'^{3}y'}{(x'^{2}+y'^{2})^{2}}}=C}     现在,如果有任何提供阻力的表面部分无限接近于旋转轴,则该常数必须为零,因为     x  =  0      {\displaystyle x=0}         C  =  0      {\displaystyle C=0}     
如果     C  =  0      {\displaystyle C=0}     
     x   ′   3         y  ′    =  0      {\displaystyle x'^{3}y'=0}     因此
     x  ′    =  0      {\displaystyle x'=0}          y  ′    =  0      {\displaystyle y'=0}     由此得出
    x  =      {\displaystyle x=}         y  =      {\displaystyle y=}     在第一种情况下,该表面将是一个无限长的圆柱体,以     Y      {\displaystyle Y}         Y      {\displaystyle Y}         Y      {\displaystyle Y}     
第 110 条 
    −     2  x   x   ′   3         y  ′       (   x   ′   2        +   y   ′   2         )   2            =  C      {\displaystyle -{\frac {2xx'^{3}y'}{(x'^{2}+y'^{2})^{2}}}=C}     其中     C      {\displaystyle C}         x      {\displaystyle x}         C      {\displaystyle C}          x  ′     y  ′        {\displaystyle x'y'}     
不保留变量     t      {\displaystyle t}     
    t  =  −  y      {\displaystyle t=-y}     以及
        d    x      d    y        =  u      {\displaystyle {\frac {{\text{d}}x}{{\text{d}}y}}=u}     则微分方程为
       −  2  x   u   3         (   u   2      +  1   )   2            =  C      {\displaystyle {\frac {-2xu^{3}}{(u^{2}+1)^{2}}}=C}     我们可以将     −  y      {\displaystyle -y}         t      {\displaystyle t}          x  ′     y  ′        {\displaystyle x'y'}         y      {\displaystyle y}         x      {\displaystyle x}         y      {\displaystyle y}         x      {\displaystyle x}     
然后我们有
    x  =  −     C  (   u   2      +  1   )   2         2   u   3            =  −    C  2      (  u  +  2   u   −  1      +   u   −  3      )      {\displaystyle x=-{\frac {C(u^{2}+1)^{2}}{2u^{3}}}=-{\frac {C}{2}}(u+2u^{-1}+u^{-3})}     以及
        d    x      d    u        =      d    x      d    y            d    y      d    u        =  u      d    y      d    u        =  −    C  2      (  1  −  2   u   −  2      −  3   u   −  4      )      {\displaystyle {\frac {{\text{d}}x}{{\text{d}}u}}={\frac {{\text{d}}x}{{\text{d}}y}}{\frac {{\text{d}}y}{{\text{d}}u}}=u{\frac {{\text{d}}y}{{\text{d}}u}}=-{\frac {C}{2}}(1-2u^{-2}-3u^{-4})}     或者
        d    y      d    u        =  −    C  2      (   u   −  1      −  2   u   −  3      −  4   u   −  5      )      {\displaystyle {\frac {{\text{d}}y}{{\text{d}}u}}=-{\frac {C}{2}}(u^{-1}-2u^{-3}-4u^{-5})}     因此
    y  =  −    C  2       [   ln    u  +   u   −  2      +    3  4       u   −  4        ]    +   C   1          {\displaystyle y=-{\frac {C}{2}}\left[\ln u+u^{-2}+{\frac {3}{4}}u^{-4}\right]+C_{1}}     方程
    x  =  −    C  2      (  u  +  2   u   −  1      +   u   −  3      )      {\displaystyle x=-{\frac {C}{2}}(u+2u^{-1}+u^{-3})}         y  =  −    C  2       [   ln    u  +   u   −  2      +    3  4       u   −  4        ]    +   C   1          {\displaystyle \qquad y=-{\frac {C}{2}}\left[\ln u+u^{-2}+{\frac {3}{4}}u^{-4}\right]+C_{1}}     确定一族曲线,其中之一是弧,该弧产生旋转曲面,如果存在最小值,则该旋转曲面产生最小值。对于这样的曲线,如果我们给     u      {\displaystyle u}         +  ∞      {\displaystyle +\infty }           3          {\displaystyle {\sqrt {3}}}     
        d    y      d    x        =    1  u      >    1   3            {\displaystyle {\frac {{\text{d}}y}{{\text{d}}x}}={\frac {1}{u}}>{\frac {1}{\sqrt {3}}}}     或者
      1  u      <    1   3            {\displaystyle {\frac {1}{u}}<{\frac {1}{\sqrt {3}}}}     换句话说,如果在弧线上任意一点处的切线与    X      {\displaystyle X}          30   ∘          {\displaystyle 30^{\circ }}          30   ∘          {\displaystyle 30^{\circ }}          30   ∘          {\displaystyle 30^{\circ }}          30   ∘          {\displaystyle 30^{\circ }}         P      {\displaystyle P}         X      {\displaystyle X}          30   ∘          {\displaystyle 30^{\circ }}         P      {\displaystyle P}          30   ∘          {\displaystyle 30^{\circ }}          30   ∘          {\displaystyle 30^{\circ }}     
↑ 该证明由 Schwarz 教授提出。