第十一章:关于使积分取到极大值或极小值的曲线的场的概念。共轭点的几何意义。
145  场的概念。146  属于曲线族     G  =  0      {\displaystyle G=0}     147  级数反演中的一个一般定理。148  相邻曲线的坐标用     k      {\displaystyle k}         k      {\displaystyle k}     149  满足方程     G  =  0      {\displaystyle G=0}     150  对     k      {\displaystyle k}     151  两条相邻曲线的交点。共轭点。152  一个点不能是它自己的共轭点。     Θ  (  t  ,   t  ′    )      {\displaystyle \Theta (t,t')}     第 145 条     A      {\displaystyle A}         G  =  0      {\displaystyle G=0}         B      {\displaystyle B}         A      {\displaystyle A}         B      {\displaystyle B}     
我们首先可以引入关于使积分取到极大值或极小值的曲线的场 的概念。
我们假设对于曲线中积分要取最大值或最小值的这一部分的所有点,函数     F  (  x  ,  y  ,   x  ′    ,   y  ′    )      {\displaystyle F(x,y,x',y')}         x  ,  y  ,   x  ′        {\displaystyle x,y,x'}          y  ′        {\displaystyle y'}          F   1          {\displaystyle F_{1}}         A  B      {\displaystyle AB}         C      {\displaystyle C}         D      {\displaystyle D}          D  ′        {\displaystyle D'}         D   D  ′        {\displaystyle DD'}         C      {\displaystyle C}         D   D  ′        {\displaystyle DD'}         D      {\displaystyle D}          D  ′        {\displaystyle D'}         A  B      {\displaystyle AB}     
第 146 条     G  =  0      {\displaystyle G=0}         A  B      {\displaystyle AB}     
    1  )  x  =  ϕ  (  t  ,  α  ,  β  )  y  =  ψ  (  t  ,  α  ,  β  )  (  t  =   t   0      …   t   1      )      {\displaystyle 1)\qquad x=\phi (t,\alpha ,\beta )\quad y=\psi (t,\alpha ,\beta )\quad (t=t_{0}\ldots t_{1})}     并且我们用以下方程表示满足微分方程     G  =  0      {\displaystyle G=0}     
    2  )     x  ¯        =  ϕ  (  t  ,  α  +   α  ′    ,  β  +   β  ′    )     y  ¯        =  ψ  (  t  ,  α  +   α  ′    ,  β  +   β  ′    )      {\displaystyle 2)\qquad {\bar {x}}=\phi (t,\alpha +\alpha ',\beta +\beta ')\quad {\bar {y}}=\psi (t,\alpha +\alpha ',\beta +\beta ')}     两条曲线都将通过同一个点    A      {\displaystyle A}         A      {\displaystyle A}          t   0          {\displaystyle t_{0}}          t   o      +   τ  ′        {\displaystyle t_{o}+\tau '}     
第一条曲线与第二条曲线相交的条件可以用以下两个方程表示:
    3  ϕ  (   t   0      +   τ  ′    ,  α  +   α  ′    ,  β  +   β  ′    )  −  ϕ  (   t   0      ,  α  ,  β  )  =  0  ψ  (   t   0      +   τ  ′    ,  α  +   α  ′    ,  β  +   β  ′    )  −  ψ  (   t   0      ,  α  ,  β  )  =  0      {\displaystyle 3\qquad \phi (t_{0}+\tau ',\alpha +\alpha ',\beta +\beta ')-\phi (t_{0},\alpha ,\beta )=0\quad \psi (t_{0}+\tau ',\alpha +\alpha ',\beta +\beta ')-\psi (t_{0},\alpha ,\beta )=0}     或者,用     τ  ′        {\displaystyle \tau '}          α  ′        {\displaystyle \alpha '}          β  ′        {\displaystyle \beta '}     
    4  )   ϕ  ′    (   t   0      )   τ  ′    +   ϕ   1      (   t   0      )   α  ′    +   ϕ   2      (   t   0      )   β  ′    +  (   τ  ′    ,   α  ′    ,   β  ′     )   2      =  0   ψ  ′    (   t   0      )   τ  ′    +   ψ   1      (   t   0      )   α  ′    +   ψ   2      (   t   0      )   β  ′    +  (   τ  ′    ,   α  ′    ,   β  ′     )   2      =  0      {\displaystyle 4)\qquad \phi '(t_{0})\tau '+\phi _{1}(t_{0})\alpha '+\phi _{2}(t_{0})\beta '+(\tau ',\alpha ',\beta ')_{2}=0\quad \psi '(t_{0})\tau '+\psi _{1}(t_{0})\alpha '+\psi _{2}(t_{0})\beta '+(\tau ',\alpha ',\beta ')_{2}=0}     其中     (   τ  ′    ,   α  ′    ,   β  ′     )   2          {\displaystyle (\tau ',\alpha ',\beta ')_{2}}          α  ′        {\displaystyle \alpha '}          β  ′        {\displaystyle \beta '}     
第 147 条      τ  ′        {\displaystyle \tau '}          α  ′        {\displaystyle \alpha '}          /    b  e  t   a  ′        {\displaystyle /beta'}     
    a  x  +  b  y  +  c  z  +  (  x  ,  y  ,  z   )   2      =  0   a  ′    x  +   b  ′    y  +   c  ′    z  +  (  x  ,  y  ,  z   )   2      =  0      {\displaystyle ax+by+cz+(x,y,z)_{2}=0\quad a'x+b'y+c'z+(x,y,z)_{2}=0}     其中三个行列式之一     a   b  ′    −   a  ′    b  ,  a   c  ′    −   a  ′    c  ,  b   c  ′    −   b  ′    c      {\displaystyle ab'-a'b,ac'-a'c,bc'-b'c}         x  ,  y  ,  z      {\displaystyle x,y,z}     
我们可以将这个变量选为     s  =   c   1      x  +   c   2      y  +   c   2      z      {\displaystyle s=c_{1}x+c_{2}y+c_{2}z}          c   1          {\displaystyle c_{1}}          c   3          {\displaystyle c_{3}}     
      |     a     b     c         a  ′        b  ′        c  ′           c   1          c   2          c   3            |      ≠  0      {\displaystyle {\begin{vmatrix}a&b&c\\a'&b'&c'\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}\neq 0}     为简洁起见,写成 (参见第 126 条)
     ψ   1      (   t   0      )   ϕ   2      (   t   0      )  −   ϕ   1      (   t   0      )   ψ   2      (   t   0      )  =   θ   3      (   t   0      )      {\displaystyle \psi _{1}(t_{0})\phi _{2}(t_{0})-\phi _{1}(t_{0})\psi _{2}(t_{0})=\theta _{3}(t_{0})}     那么,方程组 4) 中对应于以下行列式的三个表达式
    a   b  ′    −   a  ′    b  ,  a   c  ′    −   a  ′    c  ,  b   c  ′    −   b  ′    c      {\displaystyle ab'-a'b,ac'-a'c,bc'-b'c}     是
    5  )      {\displaystyle 5)}          ϕ  ′    (   t   0      )   ψ   1      (   t   0      )  −   ψ  ′    (   t   0      )   ϕ   1      (   t   0      )  =  −   θ   1      (   t   0      )      {\displaystyle \phi '(t_{0})\psi _{1}(t_{0})-\psi '(t_{0})\phi _{1}(t_{0})=-\theta _{1}(t_{0})}          ϕ  ′    (   t   0      )   ψ   2      (   t   0      )  −   ψ  ′    (   t   0      )   ϕ   2      (   t   0      )  =  −   θ   2      (   t   0      )      {\displaystyle \phi '(t_{0})\psi _{2}(t_{0})-\psi '(t_{0})\phi _{2}(t_{0})=-\theta _{2}(t_{0})}          ϕ   1      (   t   0      )   ψ   2      (   t   0      )  −   ψ   1      (   t   0      )   ϕ   2      (   t   0      )  =  −   θ   3      (   t   0      )      {\displaystyle \phi _{1}(t_{0})\psi _{2}(t_{0})-\psi _{1}(t_{0})\phi _{2}(t_{0})=-\theta _{3}(t_{0})}     其中      θ   1      (   t   0      )      {\displaystyle \theta _{1}(t_{0})}          θ   2      (   t   0      )      {\displaystyle \theta _{2}(t_{0})}     
因此我们可以写成
     c   1      =  0   c   2       α  ′    +   c   3       β  ′    =   k   1          {\displaystyle c_{1}=0\quad c_{2}\alpha '+c_{3}\beta '=k_{1}}     并进一步对常数      c   2          {\displaystyle c_{2}}          c   3          {\displaystyle c_{3}}     
    6  )    |      ϕ  ′    (   t   0      )      ϕ   1      (   t   0      )      ϕ   2      (   t   0      )         ψ  ′    (   t   0      )      ψ   1      (   t   0      )      ψ   2      (   t   0      )        0      c   2          c   3            |      =   c   2       θ   2      (   t   0      )  −   c   3       θ   1      (   t   0      )  =  1      {\displaystyle 6)\qquad {\begin{vmatrix}\phi '(t_{0})&\phi _{1}(t_{0})&\phi _{2}(t_{0})\\\psi '(t_{0})&\psi _{1}(t_{0})&\psi _{2}(t_{0})\\0&c_{2}&c_{3}\end{vmatrix}}=c_{2}\theta _{2}(t_{0})-c_{3}\theta _{1}(t_{0})=1}     如果我们只考虑方程 4) 中的线性项,我们有
         ϕ  ′    (   t   0      )   τ  ′    +   ϕ   1      (   t   0      )   α  ′    +   ϕ   2      (   t   0      )   β  ′       =  0         ψ  ′    (   t   0      )   τ  ′    +   ψ   1      (   t   0      )   α  ′    +   ψ   2      (   t   0      )   β  ′       =  0         c   2       α  ′    +   c   3       β  ′       =   k   1                  {\displaystyle {\begin{aligned}\phi '(t_{0})\tau '+\phi _{1}(t_{0})\alpha '+\phi _{2}(t_{0})\beta '&=0\\\psi '(t_{0})\tau '+\psi _{1}(t_{0})\alpha '+\psi _{2}(t_{0})\beta '&=0\\c_{2}\alpha '+c_{3}\beta '&=k_{1}\end{aligned}}}     从这些方程中,我们得到了      τ  ′    ,   α  ′        {\displaystyle \tau ',\alpha '}          /    b  e  t   a  ′        {\displaystyle /beta'}     
    7  )   τ  ′    =  −   k   1       θ   3      (   t   0      )   α  ′    =  +   k   1       θ   2      (   t   0      )   β  ′    =  −   k   1       θ   1      (   t   0      )      {\displaystyle 7)\qquad \tau '=-k_{1}\theta _{3}(t_{0})\quad \alpha '=+k_{1}\theta _{2}(t_{0})\quad \beta '=-k_{1}\theta _{1}(t_{0})}     因此,最终得到:
     7   a      )   τ  ′    =  −   k   1       θ   3      (   t   0      )  +   k   1     2       P   1      (   k   1      ,   t   0      )   α  ′    =  +   k   1       θ   2      (   t   0      )  +   k   1     2       P   2      (   k   1      ,   t   0      )   β  ′    =  −   k   1       θ   1      (   t   0      )  +   k   1     2       P   3      (   k   1      ,   t   0      )      {\displaystyle 7^{a})\qquad \tau '=-k_{1}\theta _{3}(t_{0})+k_{1}^{2}P_{1}(k_{1},t_{0})\quad \alpha '=+k_{1}\theta _{2}(t_{0})+k_{1}^{2}P_{2}(k_{1},t_{0})\quad \beta '=-k_{1}\theta _{1}(t_{0})+k_{1}^{2}P_{3}(k_{1},t_{0})}     其中      P   1      (   k   1      ,   t   0      )  ,   P   2      (   k   1      ,   t   0      )      {\displaystyle P_{1}(k_{1},t_{0}),P_{2}(k_{1},t_{0})}          P   3      (   k   1      ,   t   0      )      {\displaystyle P_{3}(k_{1},t_{0})}          k   1          {\displaystyle k_{1}}          t   0          {\displaystyle t_{0}}     
如果我们将这些表达式代入方程 2) 中,或者等价地,代入
    8  )     x  ¯        =  ϕ  (  t  +   τ  ′    ,  α  +   α  ′    ,  β  +   β  ′    )     y  ¯        =  ψ  (  t  +   τ  ′    ,  α  +   α  ′    ,  β  +   β  ′    )      {\displaystyle 8)\qquad {\bar {x}}=\phi (t+\tau ',\alpha +\alpha ',\beta +\beta ')\quad {\bar {y}}=\psi (t+\tau ',\alpha +\alpha ',\beta +\beta ')}     其中,现在,    t      {\displaystyle t}          t   0          {\displaystyle t_{0}}     
    9  )      {\displaystyle 9)}            x  ¯        =  x  −   k   1      [   ϕ  ′    (  t  )   θ   3      (   t   0      )  −   ϕ   1      (  t  )   θ   2      (   t   0      )  +   ϕ   2      (  t  )   θ   1      (   t   0      )  ]  +   k   1      (  t  ,   k   1      )      {\displaystyle {\bar {x}}=x-k_{1}[\phi '(t)\theta _{3}(t_{0})-\phi _{1}(t)\theta _{2}(t_{0})+\phi _{2}(t)\theta _{1}(t_{0})]+k_{1}(t,k_{1})}            y  ¯        =  y  −   k   1      [   ψ  ′    (  t  )   θ   3      (   t   0      )  −   ψ   1      (  t  )   θ   2      (   t   0      )  +   ψ   2      (  t  )   θ   1      (   t   0      )  ]  +   k   1      (  t  ,   k   1      )  I  n  t  h  e  s  e  e  q  u  a  t  i  o  n  s  t  h  e  s  y  m  b  o  l  <  m  a  t  h  >  (  t  ,   k   1      )      {\displaystyle {\bar {y}}=y-k_{1}[\psi '(t)\theta _{3}(t_{0})-\psi _{1}(t)\theta _{2}(t_{0})+\psi _{2}(t)\theta _{1}(t_{0})]+k_{1}(t,k_{1})Intheseequationsthesymbol<math>(t,k_{1})}         t      {\displaystyle t}          k   1          {\displaystyle k_{1}}     当      k   1      =  0      {\displaystyle k_{1}=0}          k   1          {\displaystyle k_{1}}         t      {\displaystyle t}         G  =  0      {\displaystyle G=0}         A      {\displaystyle A}     
第 148 条      τ  ′    ,   α  ′    ,   β  ′        {\displaystyle \tau ',\alpha ',\beta '}          k   1          {\displaystyle k_{1}}          c   1      ,   c   2      ,   c   3          {\displaystyle c_{1},c_{2},c_{3}}          τ  ′    ,   α  ′    ,   β  ′        {\displaystyle \tau ',\alpha ',\beta '}     
      |      ϕ  ′    (   t   0      )      ϕ   1      (   t   0      )      ϕ   2      (   t   0      )         ψ  ′    (   t   0      )      ψ   1      (   t   0      )      ψ   2      (   t   0      )        0      c   2          c   3            |      ≠  0      {\displaystyle {\begin{vmatrix}\phi '(t_{0})&\phi _{1}(t_{0})&\phi _{2}(t_{0})\\\psi '(t_{0})&\psi _{1}(t_{0})&\psi _{2}(t_{0})\\0&c_{2}&c_{3}\end{vmatrix}}\neq 0}     这个条件由表示两条曲线在点     A  =   t   0          {\displaystyle A=t_{0}}     
因为,用     k      {\displaystyle k}     
    k  =         d     y   0          d     x   0            −      d        y  ¯         0          d        x  ¯         0               1  +      d     y   0          d     x   0                d        y  ¯         0          d        x  ¯         0                  =         x  ¯         0    ′     y   0    ′    −      y  ¯         0    ′     x   0    ′           x  ¯         0    ′     x   0    ′    +      y  ¯         0    ′     y   0    ′          =       |      ϕ  ″    (   t   0      )      ψ  ″    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |       τ  ′    +    |      ϕ   1    ′    (   t   0      )      ψ   1    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |       α  ′    +    |      ϕ   2    ′    (   t   0      )      ψ   2    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |       β  ′    +  (   τ  ′    ,   α  ′    ,   β  ′     )   2          ϕ   ′   2        (   t   0      )  +   ψ   ′   2        (   t   0      )  +  (   τ  ′    ,   α  ′    ,   β  ′     )   1                {\displaystyle k={\frac {{\frac {{\text{d}}y_{0}}{{\text{d}}x_{0}}}-{\frac {{\text{d}}{\bar {y}}_{0}}{{\text{d}}{\bar {x}}_{0}}}}{1+{\frac {{\text{d}}y_{0}}{{\text{d}}x_{0}}}{\frac {{\text{d}}{\bar {y}}_{0}}{{\text{d}}{\bar {x}}_{0}}}}}={\frac {{\bar {x}}_{0}'y_{0}'-{\bar {y}}_{0}'x_{0}'}{{\bar {x}}_{0}'x_{0}'+{\bar {y}}_{0}'y_{0}'}}={\frac {{\begin{vmatrix}\phi ''(t_{0})&\psi ''(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}\tau '+{\begin{vmatrix}\phi _{1}'(t_{0})&\psi _{1}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}\alpha '+{\begin{vmatrix}\phi _{2}'(t_{0})&\psi _{2}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}\beta '+(\tau ',\alpha ',\beta ')_{2}}{\phi '^{2}(t_{0})+\psi '^{2}(t_{0})+(\tau ',\alpha ',\beta ')_{1}}}}     假设曲线在点     A      {\displaystyle A}          ϕ  ′    (   t   0      )      {\displaystyle \phi '(t_{0})}          ψ  ′    (   t   0      )      {\displaystyle \psi '(t_{0})}          ϕ   ′   2        (   t   0      )  +   ψ   ′   2        (   t   0      )      {\displaystyle \phi '^{2}(t_{0})+\psi '^{2}(t_{0})}     
因此,等式 4)和 10)的行列式为
      1    ϕ   ′   2        (   t   0      )  +   ψ   ′   2        (   t   0      )          |      ϕ  ′    (   t   0      )      ϕ   1      (   t   0      )      ϕ   2      (   t   0      )         ψ  ′    (   t   0      )      ψ   1      (   t   0      )      ψ   2      (   t   0      )          |      ϕ  ″    (   t   0      )      ψ  ″    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |           |      ϕ   1    ′    (   t   0      )      ψ   1    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |           |      ϕ   2    ′    (   t   0      )      ψ   2    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |            |          {\displaystyle {\frac {1}{\phi '^{2}(t_{0})+\psi '^{2}(t_{0})}}{\begin{vmatrix}\phi '(t_{0})&\phi _{1}(t_{0})&\phi _{2}(t_{0})\\\psi '(t_{0})&\psi _{1}(t_{0})&\psi _{2}(t_{0})\\{\begin{vmatrix}\phi ''(t_{0})&\psi ''(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}&{\begin{vmatrix}\phi _{1}'(t_{0})&\psi _{1}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}&{\begin{vmatrix}\phi _{2}'(t_{0})&\psi _{2}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}\end{vmatrix}}}     将第一行水平乘以      ψ  ″    (   t   0      )      {\displaystyle \psi ''(t_{0})}         −   ϕ  ″    (   t   0      )      {\displaystyle -\phi ''(t_{0})}     
    0    |      ϕ   1    ′    (   t   0      )      ψ   1    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |      +    |      ϕ   1      (   t   0      )      ψ   1      (   t   0      )         ϕ  ″    (   t   0      )      ψ  ″    (   t   0      )        |        |      ϕ   2    ′    (   t   0      )      ψ   2    ′    (   t   0      )         ϕ  ′    (   t   0      )      ψ  ′    (   t   0      )        |      +    |      ϕ   2      (   t   0      )      ψ   2      (   t   0      )         ϕ  ″    (   t   0      )      ψ  ″    (   t   0      )        |          {\displaystyle 0\qquad {\begin{vmatrix}\phi _{1}'(t_{0})&\psi _{1}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}+{\begin{vmatrix}\phi _{1}(t_{0})&\psi _{1}(t_{0})\\\phi ''(t_{0})&\psi ''(t_{0})\end{vmatrix}}\qquad {\begin{vmatrix}\phi _{2}'(t_{0})&\psi _{2}'(t_{0})\\\phi '(t_{0})&\psi '(t_{0})\end{vmatrix}}+{\begin{vmatrix}\phi _{2}(t_{0})&\psi _{2}(t_{0})\\\phi ''(t_{0})&\psi ''(t_{0})\end{vmatrix}}}     或者,等价于
    0   θ   1    ′    (   t   0      )   θ   2    ′    (   t   0      )      {\displaystyle 0\qquad \theta _{1}'(t_{0})\qquad \theta _{2}'(t_{0})}     因此,上述行列式为
    10  )    1    ϕ   ′   2        (   t   0      )  +   ψ   ′   2        (   t   0      )        [   θ   1    ′    (   t   0      )   θ   2      (   t   0      )  −   θ   2    ′    (   t   0      )   θ   1      (   t   0      )  ]  =    1    ϕ   ′   2        (   t   0      )  +   ψ   ′   2        (   t   0      )          C    F   1      (   t   0      )            {\displaystyle 10)\qquad {\frac {1}{\phi '^{2}(t_{0})+\psi '^{2}(t_{0})}}[\theta _{1}'(t_{0})\theta _{2}(t_{0})-\theta _{2}'(t_{0})\theta _{1}(t_{0})]={\frac {1}{\phi '^{2}(t_{0})+\psi '^{2}(t_{0})}}{\frac {C}{F_{1}(t_{0})}}\quad }     这个表达式(loc. cit. )不等于零。
因此,我们可以用     k      {\displaystyle k}          k   1          {\displaystyle k_{1}}     
    11  )     x  ¯        =  x  +  k   f   1      (  t  ,  k  )     y  ¯        =  y  +  k   f   2      (  t  ,  k  )      {\displaystyle 11)\qquad {\bar {x}}=x+kf_{1}(t,k)\quad {\bar {y}}=y+kf_{2}(t,k)}     第 149 条     G  =  0      {\displaystyle G=0}     因此,只要知道了曲线上的初始点以及该点处的切线方向,就完全确定了满足方程     G  =  0      {\displaystyle G=0}      
设     a  ,  b      {\displaystyle a,b}         A      {\displaystyle A}         X      {\displaystyle X}         X      {\displaystyle X}         t  ,  v      {\displaystyle t,v}         x  ,  y      {\displaystyle x,y}         A      {\displaystyle A}     
    12  )  t  =  (  x  −  a  )  cos    λ  −  (  y  −  b  )  sin    λ  v  =  (  x  −  a  )  sin    λ  +  (  y  −  b  )  cos    λ      {\displaystyle 12)\qquad t=(x-a)\cos \lambda -(y-b)\sin \lambda \quad v=(x-a)\sin \lambda +(y-b)\cos \lambda }     或者
    13  )  x  =  a  +  t  cos    λ  +  v  sin    λ  y  =  b  −  t  sin    λ  +  v  cos    λ      {\displaystyle 13)\qquad x=a+t\cos \lambda +v\sin \lambda \quad y=b-t\sin \lambda +v\cos \lambda }     现在如果我们选择     t      {\displaystyle t}     
     x  ′    =  cos    λ  +      d    v      d    t        sin    λ      d     x  ′        d    t        =       d     2      v      d     t   2            sin    λ      {\displaystyle x'=\cos \lambda +{\frac {{\text{d}}v}{{\text{d}}t}}\sin \lambda \qquad {\frac {{\text{d}}x'}{{\text{d}}t}}={\frac {{\text{d}}^{2}v}{{\text{d}}t^{2}}}\sin \lambda }          y  ′    =  −  sin    λ  +      d    v      d    t        cos    λ      d     y  ′        d    t        =       d     2      v      d     t   2            cos    λ      {\displaystyle y'=-\sin \lambda +{\frac {{\text{d}}v}{{\text{d}}t}}\cos \lambda \qquad {\frac {{\text{d}}y'}{{\text{d}}t}}={\frac {{\text{d}}^{2}v}{{\text{d}}t^{2}}}\cos \lambda }     因此
     x  ′        d     y  ′        d    t        −   y  ′        d     x  ′        d    t        =       d     2      v      d     t   2                {\displaystyle x'{\frac {{\text{d}}y'}{{\text{d}}t}}-y'{\frac {{\text{d}}x'}{{\text{d}}t}}={\frac {{\text{d}}^{2}v}{{\text{d}}t^{2}}}}     微分方程     G  =  0      {\displaystyle G=0}     
     F   1       (    x  ′        d     y  ′        d    t        −   y  ′        d     x  ′        d    t          )    +  H  (  x  ,  y  ,   x  ′    ,   y  ′    )  =  0      {\displaystyle F_{1}\left(x'{\frac {{\text{d}}y'}{{\text{d}}t}}-y'{\frac {{\text{d}}x'}{{\text{d}}t}}\right)+H(x,y,x',y')=0}     则变为
    14  )  0  =       d     2      v      d     t   2             F   1       (   a  +  t  cos    λ  +  v  sin    λ  ,  b  −  t  sin    λ  +  v  cos    λ  ,  cos    λ  +      d    v      d    t        sin    λ  ,  −  sin    λ  +      d    v      d    t        cos    λ    )    +  H   (   t  ,  v  ,      d    v      d    t          )        {\displaystyle 14)\qquad 0={\frac {{\text{d}}^{2}v}{{\text{d}}t^{2}}}F_{1}\left(a+t\cos \lambda +v\sin \lambda ,b-t\sin \lambda +v\cos \lambda ,\cos \lambda +{\frac {{\text{d}}v}{{\text{d}}t}}\sin \lambda ,-\sin \lambda +{\frac {{\text{d}}v}{{\text{d}}t}}\cos \lambda \right)+H\left(t,v,{\frac {{\text{d}}v}{{\text{d}}t}}\right)\quad }     根据第六章给出的积分方法,我们以如下方式解上述方程:当    t  =  0      {\displaystyle t=0}         v  =  0      {\displaystyle v=0}             d    v      d    t        =  0      {\displaystyle {\frac {{\text{d}}v}{{\text{d}}t}}=0}         v      {\displaystyle v}         A      {\displaystyle A}     
因此,如果      F   1      (  a  ,  b  ,  cos    λ  ,  −  sin    λ  )      {\displaystyle F_{1}(a,b,\cos \lambda ,-\sin \lambda )}         H   (   t  ,  v  ,      d    v      d    t          )        {\displaystyle H\left(t,v,{\frac {{\text{d}}v}{{\text{d}}t}}\right)}         A      {\displaystyle A}          F   1          {\displaystyle F_{1}}         H      {\displaystyle H}         t      {\displaystyle t}         t  =  0      {\displaystyle t=0}     
这个幂级数的形式为
    v  =   t   2      P  (  t  )      {\displaystyle v=t^{2}P(t)}     将此     v      {\displaystyle v}     
    15  )  x  =  a  +  t  cos    λ  +   A   1       t   2      +  …  y  =  b  −  t  sin    λ  +   B   1       t   2      …      {\displaystyle 15)\qquad x=a+t\cos \lambda +A_{1}t^{2}+\ldots \quad y=b-t\sin \lambda +B_{1}t^{2}\ldots }     其中常数      A   1      ,   B   1      ,  …      {\displaystyle A_{1},B_{1},\ldots }     
因此,方程 15) 完全确定了满足微分方程     G  =  0      {\displaystyle G=0}         a  ,  b      {\displaystyle a,b}         X      {\displaystyle X}     
由此,我们立即得到,通过方程 11),我们拥有所有经过相同初始点的且满足微分方程     G  =  0      {\displaystyle G=0}     
第 150 条     k      {\displaystyle k}         k      {\displaystyle k}         G  =  0      {\displaystyle G=0}     
这使得能够在两条曲线之间建立一个单值关系,使得对于原始曲线上的每个点,我们都可以确定邻近曲线上的点,该点是原始曲线上该点法线与邻近曲线相交的点。
设     x  ,  y      {\displaystyle x,y}         P      {\displaystyle P}         x  +  ξ  ,  y  +  η      {\displaystyle x+\xi ,y+\eta }     
如果      P  ′        {\displaystyle P'}         P      {\displaystyle P}     
    x  +  ξ  =  ϕ  (  t  +  τ  ,  α  +   α  ′    ,  β  +   β  ′    )  y  +  η  =  ψ  (  t  +  τ  ,  α  +   α  ′    ,  β  +   β  ′    )      {\displaystyle x+\xi =\phi (t+\tau ,\alpha +\alpha ',\beta +\beta ')\qquad y+\eta =\psi (t+\tau ,\alpha +\alpha ',\beta +\beta ')}     此外,由于     (  X  −  x  )   x  ′    +  (  Y  −  y  )   y  ′    =  0      {\displaystyle (X-x)x'+(Y-y)y'=0}         X  =  x  +  ξ  ,  Y  =  y  +  η      {\displaystyle X=x+\xi ,Y=y+\eta }     
     x  ′    ξ  +   y  ′    η  =  0      {\displaystyle x'\xi +y'\eta =0}     因此,需要从以下方程中确定     ξ  ,  η      {\displaystyle \xi ,\eta }         τ      {\displaystyle \tau }     
    16  )  ξ  =   ϕ  ′    (  t  )  τ  +   ϕ   1      (  t  )   α  ′    +   ϕ   2      (  t  )   β  ′    +  …  η  =   ψ  ′    (  t  )  τ  +   ψ   1      (  t  )   α  ′    +   ψ   2      (  t  )   β  ′    +  …  0  =   ϕ  ′    (  t  )  ξ  +   ψ  ′    (  t  )  η      {\displaystyle 16)\qquad \xi =\phi '(t)\tau +\phi _{1}(t)\alpha '+\phi _{2}(t)\beta '+\ldots \quad \eta =\psi '(t)\tau +\psi _{1}(t)\alpha '+\psi _{2}(t)\beta '+\ldots \quad 0=\phi '(t)\xi +\psi '(t)\eta }     将最后一个方程与第一个和第二个方程结合起来得到
    17  )  0  =  [   ϕ   ′   2        (  t  )  +   ψ   ′   2        (  t  )  ]  τ  +  k  f  (  t  )  +  (  t  ,  k  )      {\displaystyle 17)\qquad 0=[\phi '^{2}(t)+\psi '^{2}(t)]\tau +kf(t)+(t,k)}     当对于     α  ′    ,   β  ′        {\displaystyle \alpha ',\beta '}          7   a      )      {\displaystyle 7^{a})}         k      {\displaystyle k}     
由于曲线    A  B      {\displaystyle AB}          ϕ   ′   2        (  t  )  +   ψ   ′   2        (  t  )      {\displaystyle \phi '^{2}(t)+\psi '^{2}(t)}         τ      {\displaystyle \tau }         ξ      {\displaystyle \xi }         η      {\displaystyle \eta }         k      {\displaystyle k}         k      {\displaystyle k}     
第 151 条     P   P  ′        {\displaystyle PP'}         ξ  ,  η      {\displaystyle \xi ,\eta }         t      {\displaystyle t}         t  ,  τ  ,   τ  ′    ,   α  ′    ,   β  ′        {\displaystyle t,\tau ,\tau ',\alpha ',\beta '}         ξ      {\displaystyle \xi }         η      {\displaystyle \eta }     
方程 4) 和 16) 中具有相同维度的项分别是      τ  ′    ,   α  ′    ,   β  ′        {\displaystyle \tau ',\alpha ',\beta '}         τ  ,   α  ′    ,   β  ′        {\displaystyle \tau ,\alpha ',\beta '}     
    (   ϕ  ′    (   t   0      )  +  v  )   τ  ′    +  (   ϕ   1      (   t   0      )  +  p  )   α  ′    +  (   ϕ   2      (   t   0      )  +  q  )   β  ′    =  0      {\displaystyle (\phi '(t_{0})+v)\tau '+(\phi _{1}(t_{0})+p)\alpha '+(\phi _{2}(t_{0})+q)\beta '=0}         (   ψ  ′    (   t   0      )  +   v   1      )   τ  ′    +  (   ψ   1      (   t   0      )  +   p   1      )   α  ′    +  (   ψ   2      (   t   0      )  +   q   1      )   β  ′    =  0      {\displaystyle (\psi '(t_{0})+v_{1})\tau '+(\psi _{1}(t_{0})+p_{1})\alpha '+(\psi _{2}(t_{0})+q_{1})\beta '=0}         (   ϕ  ′    (   t   0      )  +   v   2      )   τ  ′    +  (   ϕ   1      (   t   0      )  +   p   2      )   α  ′    +  (   ϕ   2      (   t   0      )  +   q   2      )   β  ′    =  0      {\displaystyle (\phi '(t_{0})+v_{2})\tau '+(\phi _{1}(t_{0})+p_{2})\alpha '+(\phi _{2}(t_{0})+q_{2})\beta '=0}         (   ψ  ′    (   t   0      )  +   v   3      )   τ  ′    +  (   ψ   1      (   t   0      )  +   p   3      )   α  ′    +  (   ψ   2      (   t   0      )  +   q   2      )   β  ′    =  0      {\displaystyle (\psi '(t_{0})+v_{3})\tau '+(\psi _{1}(t_{0})+p_{3})\alpha '+(\psi _{2}(t_{0})+q_{2})\beta '=0}     其中     v  ,  p  ,  q  ,   v   1      ,   p   1      ,   q   1          {\displaystyle v,p,q,v_{1},p_{1},q_{1}}          τ  ′    ,   α  ′    ,   β  ′        {\displaystyle \tau ',\alpha ',\beta '}          v   2      ,   p   2      ,   q   2      ,   v   3      ,   q   3      ,   q   3          {\displaystyle v_{2},p_{2},q_{2},v_{3},q_{3},q_{3}}         τ  ,   α  ′    ,   β  ′        {\displaystyle \tau ,\alpha ',\beta '}         k      {\displaystyle k}     
前两个等式表示两条相邻曲线经过初始点     A      {\displaystyle A}     
为了使这四个等式同时成立,它们的行列式必须为零。当在该行列式中令     k  =  0      {\displaystyle k=0}     
      |      ϕ  ′    (   t   0      )     0      ϕ   1      (   t   0      )      ϕ   2      (   t   0      )         ψ  ′    (   t   0      )     0      ψ   1      (   t   0      )      ψ   2      (   t   0      )        0      ϕ  ′    (  t  )      ϕ   1      (  t  )      ϕ   2      (  t  )        0      ψ  ′    (  t  )      ψ   1      (  t  )      ψ   2      (  t  )        |          {\displaystyle {\begin{vmatrix}\phi '(t_{0})&0&\phi _{1}(t_{0})&\phi _{2}(t_{0})\\\psi '(t_{0})&0&\psi _{1}(t_{0})&\psi _{2}(t_{0})\\0&\phi '(t)&\phi _{1}(t)&\phi _{2}(t)\\0&\psi '(t)&\psi _{1}(t)&\psi _{2}(t)\end{vmatrix}}}     这只不过是函数     −  Θ  (  t  ,   t   0      )      {\displaystyle -\Theta (t,t_{0})}         −  Θ  (  t  ,   t   0      )  −  k  (  t  ,   t   0      ,  k  )      {\displaystyle -\Theta (t,t_{0})-k(t,t_{0},k)}     
    18  )  Θ  (  t  ,   t   0      )  +  k  (  t  ,   t   0      ,  k  )  =  0      {\displaystyle 18)\qquad \Theta (t,t_{0})+k(t,t_{0},k)=0}     If, now,     C      {\displaystyle C}         t  =   t  ′        {\displaystyle t=t'}         A      {\displaystyle A}         Θ  (   t  ′    ,   t   0      )      {\displaystyle \Theta (t',t_{0})}         k      {\displaystyle k}         k      {\displaystyle k}         Θ  (   t  ′    ,   t   0      )  +  k  (   t  ′    ,   t   0      ,  k  )      {\displaystyle \Theta (t',t_{0})+k(t',t_{0},k)}          t  ′        {\displaystyle t'}         h      {\displaystyle h}         t      {\displaystyle t}          t  ′    −  h  …   t  ′    +  h      {\displaystyle t'-h\ldots t'+h}         C      {\displaystyle C}         C      {\displaystyle C}         A  B      {\displaystyle AB}         A      {\displaystyle A}         k      {\displaystyle k}         h      {\displaystyle h}         Θ  (   t  ′    −  h  ,   t   0      )  −  k  (   t  ′    −  h  ,   t   0      ,  k  )      {\displaystyle \Theta (t'-h,t_{0})-k(t'-h,t_{0},k)}         Θ  (   t  ′    −  h  ,   t   0      )      {\displaystyle \Theta (t'-h,t_{0})}         T  h  e  t  a  (   t  ′    +  h  ,   t   0      )  +  k  (   t  ′    +  h  ,   t   0      ,  k  )      {\displaystyle Theta(t'+h,t_{0})+k(t'+h,t_{0},k)}         Θ  (   t  ′    +  h  ,   t   0      )      {\displaystyle \Theta (t'+h,t_{0})}         Θ  (   t  ′    ,   t   0      )      {\displaystyle \Theta (t',t_{0})}         Θ  (   t  ′    ,   t   0      )      {\displaystyle \Theta (t',t_{0})}         Θ  (  t  ,   t   0      )  +  k  (  t  ,   t   0      ,  k  )      {\displaystyle \Theta (t,t_{0})+k(t,t_{0},k)}          t  ′    −  h  …   t  ′    +  h      {\displaystyle t'-h\ldots t'+h}     If, in the interval     A  B      {\displaystyle AB}         t  =   t  ′        {\displaystyle t=t'}         G  =  0      {\displaystyle G=0}         A      {\displaystyle A}          t  ′        {\displaystyle t'}      
如果在区间     A  B      {\displaystyle AB}     
第 152 条     A      {\displaystyle A}         A      {\displaystyle A}         t      {\displaystyle t}     
      |     0      ϕ  ′    (   t   0      )  +  v      ϕ   1      (   t   0      )  +  p      ϕ   2      (   t   0      )  +  q        0      ψ  ′    (   t   0      )  +   v   1          ψ   1      (   t   0      )  +   p   1          ψ   2      (   t   0      )  +   q   1             ϕ  ′    (  t  )  +   v   2         0      ϕ   1      (  t  )  +   p   2          ϕ   2      (  t  )  +   q   2             ψ  ′    (  t  )  +   v   3         0      ψ   1      (  t  )  +   p   3          ψ   2      (  t  )  +   q   3            |      =  0      {\displaystyle {\begin{vmatrix}0&\phi '(t_{0})+v&\phi _{1}(t_{0})+p&\phi _{2}(t_{0})+q\\0&\psi '(t_{0})+v_{1}&\psi _{1}(t_{0})+p_{1}&\psi _{2}(t_{0})+q_{1}\\\phi '(t)+v_{2}&0&\phi _{1}(t)+p_{2}&\phi _{2}(t)+q_{2}\\\psi '(t)+v_{3}&0&\psi _{1}(t)+p_{3}&\psi _{2}(t)+q_{3}\end{vmatrix}}=0}     当     k  =  0      {\displaystyle k=0}         Θ  (  t  ,   t   0      )  =  0      {\displaystyle \Theta (t,t_{0})=0}         k      {\displaystyle k}         τ  ,   τ  ′    ,   α  ′    ,   β  ′        {\displaystyle \tau ,\tau ',\alpha ',\beta '}         t      {\displaystyle t}         k      {\displaystyle k}          ϕ  ′    (  t  )  ,   ϕ   1      (  t  )  ,  …   ψ   2      (  t  )      {\displaystyle \phi '(t),\phi _{1}(t),\ldots \psi _{2}(t)}         t      {\displaystyle t}          t   0          {\displaystyle t_{0}}         t  −   t   0          {\displaystyle t-t_{0}}         k      {\displaystyle k}         t  −   t   0          {\displaystyle t-t_{0}}         k      {\displaystyle k}         A      {\displaystyle A}         t  −   t   0          {\displaystyle t-t_{0}}         k      {\displaystyle k}     
如果我们写     t  −   t   0          {\displaystyle t-t_{0}}         v  ,  p  ,  q      {\displaystyle v,p,q}          v   2      ,   p   2      ,   q   2          {\displaystyle v_{2},p_{2},q_{2}}          v   1      ,   p   1      ,   q   1          {\displaystyle v_{1},p_{1},q_{1}}          v   3      ,   p   3      ,   q   3          {\displaystyle v_{3},p_{3},q_{3}}     
在这种情况下,行列式具有以下形式
      |     0     a     b     c        0      a   1          b   1          c   1            a     0     b     c         a   1         0      b   1          c   1            |          {\displaystyle {\begin{vmatrix}0&a&b&c\\0&a_{1}&b_{1}&c_{1}\\a&0&b&c\\a_{1}&0&b_{1}&c_{1}\end{vmatrix}}}     它恒等于零。因此,关于     t  −   t   0          {\displaystyle t-t_{0}}         k      {\displaystyle k}         t  −   t   0          {\displaystyle t-t_{0}}         k      {\displaystyle k}         t  −   t   0          {\displaystyle t-t_{0}}     
因此,当行列式被     t  −   t   0          {\displaystyle t-t_{0}}         t  =   t   0          {\displaystyle t=t_{0}}     
    19  )    [      d    Θ  (  t  ,   t   0      )      d    t        ]     t  =   t   0          +  (  t  −   t   0      ,  k   )   t  =   t   0          =  0      {\displaystyle 19)\qquad \left[{\frac {{\text{d}}\Theta (t,t_{0})}{{\text{d}}t}}\right]_{t=t_{0}}+(t-t_{0},k)_{t=t_{0}}=0}     我们在第 128 和 129 条中看到
    Θ  (  t  ,   t   0      )  =   θ   1      (   t   0      )   θ   2      (  t  )  −   θ   2      (   t   0      )   θ   1      (  t  )      {\displaystyle \Theta (t,t_{0})=\theta _{1}(t_{0})\theta _{2}(t)-\theta _{2}(t_{0})\theta _{1}(t)}     以及
     θ   1      (  t  )   θ   2    ′    (  t  )  −   θ   2      (  t  )   θ   1    ′    (  t  )  =    C    F   1      (  t  )            {\displaystyle \theta _{1}(t)\theta _{2}'(t)-\theta _{2}(t)\theta _{1}'(t)={\frac {C}{F_{1}(t)}}}     如果      t  ′        {\displaystyle t'}          t   0          {\displaystyle t_{0}}     
    Θ  (  t  ,   t   0      )  =   θ   1      (   t   0      )   θ   2      (   t  ′    )  −   θ   2      (   t   0      )   θ   1       t  ′    )  =  0      {\displaystyle \Theta (t,t_{0})=\theta _{1}(t_{0})\theta _{2}(t')-\theta _{2}(t_{0})\theta _{1}t')=0}     那么我们可以得出
     θ   1      (   t  ′    )  =  λ   θ   1      (   t   0      )   θ   2      (   t  ′    )  =  λ   θ   2      (   t   0      )      {\displaystyle \theta _{1}(t')=\lambda \theta _{1}(t_{0})\qquad \theta _{2}(t')=\lambda \theta _{2}(t_{0})}     其中     λ      {\displaystyle \lambda }     
我们进一步得到,由于
      d    d    t        Θ  (  t  ,   t   0      )  =   θ   1      (   t   0      )   θ   2    ′    (  t  )  −   θ   2      (   t   0      )   θ   1    ′    (  t  )      {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\Theta (t,t_{0})=\theta _{1}(t_{0})\theta _{2}'(t)-\theta _{2}(t_{0})\theta _{1}'(t)}     关系
      [     d    d    t        Θ  (  t  ,   t   0      )    ]     t  =   t  ′        =    1  λ        C    F   1      (   t  ′    )            {\displaystyle \left[{\frac {\text{d}}{{\text{d}}t}}\Theta (t,t_{0})\right]_{t=t'}={\frac {1}{\lambda }}{\frac {C}{F_{1}(t')}}}     不等于零。
因此可以看出     Θ  (  t  ,   t   0      )      {\displaystyle \Theta (t,t_{0})}     
同时,我们也表明只要     k      {\displaystyle k}         t  −   t   0          {\displaystyle t-t_{0}}     
由于变量    t      {\displaystyle t}         α      {\displaystyle \alpha }          /    b  e  t  a      {\displaystyle /beta}         Θ      {\displaystyle \Theta }         Θ  (  t  ,   t   0      )      {\displaystyle \Theta (t,t_{0})}         Θ      {\displaystyle \Theta }