跳转到内容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目录
移到侧边栏
隐藏
开始
1
连续时间傅里叶变换 (CTFT)
切换连续时间傅里叶变换 (CTFT) 小节
1.1
CTFT 表格
2
离散时间傅里叶变换 (DTFT)
切换离散时间傅里叶变换 (DTFT) 小节
2.1
DTFT 表格
2.2
DTFT 属性
3
离散傅里叶变换 (DFT)
切换离散傅里叶变换 (DFT) 小节
3.1
DFT 表格
4
Z 变换
切换 Z 变换 小节
4.1
Z 变换 表格
5
双线性变换
6
离散余弦变换 (DCT)
7
哈尔变换
切换目录
数字信号处理/变换
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外观
移到侧边栏
隐藏
来自维基教科书,开放世界中的开放书籍
<
数字信号处理
数字信号处理
本页面列出了一些来自本书的变换,解释了它们的用途,并列出了一些常用函数的变换对。
连续时间傅里叶变换 (CTFT)
[
编辑
|
编辑源代码
]
[CTFT]
F
(
ω
)
=
∫
f
(
t
)
e
j
ω
t
d
t
{\displaystyle {\mathcal {F}}(\omega )=\int f(t)e^{j\omega t}dt}
CTFT 表格
[
编辑
|
编辑源代码
]
时域
频域
x
(
t
)
=
F
−
1
{
X
(
ω
)
}
{\displaystyle x(t)={\mathcal {F}}^{-1}\left\{X(\omega )\right\}}
X
(
ω
)
=
F
{
x
(
t
)
}
{\displaystyle X(\omega )={\mathcal {F}}\left\{x(t)\right\}}
1
X
(
j
ω
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
ω
t
d
t
{\displaystyle X(j\omega )=\int _{-\infty }^{\infty }x(t)e^{-j\omega t}dt}
x
(
t
)
=
1
2
π
∫
−
∞
∞
X
(
ω
)
e
j
ω
t
d
ω
{\displaystyle x(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }X(\omega )e^{j\omega t}d\omega }
2
1
{\displaystyle 1\,}
2
π
δ
(
ω
)
{\displaystyle 2\pi \delta (\omega )\,}
3
−
0.5
+
u
(
t
)
{\displaystyle -0.5+u(t)\,}
1
j
ω
{\displaystyle {\frac {1}{j\omega }}\,}
4
δ
(
t
)
{\displaystyle \delta (t)\,}
1
{\displaystyle 1\,}
5
δ
(
t
−
c
)
{\displaystyle \delta (t-c)\,}
e
−
j
ω
c
{\displaystyle e^{-j\omega c}\,}
6
u
(
t
)
{\displaystyle u(t)\,}
π
δ
(
ω
)
+
1
j
ω
{\displaystyle \pi \delta (\omega )+{\frac {1}{j\omega }}\,}
7
e
−
b
t
u
(
t
)
(
b
>
0
)
{\displaystyle e^{-bt}u(t)\,(b>0)}
1
j
ω
+
b
{\displaystyle {\frac {1}{j\omega +b}}\,}
8
cos
ω
0
t
{\displaystyle \cos \omega _{0}t\,}
π
[
δ
(
ω
+
ω
0
)
+
δ
(
ω
−
ω
0
)
]
9
cos
(
ω
0
t
+
θ
)
{\displaystyle \cos(\omega _{0}t+\theta )\,}
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
+
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle \pi \left[e^{-j\theta }\delta (\omega +\omega _{0})+e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
10
sin
ω
0
t
{\displaystyle \sin \omega _{0}t\,}
j
π
[
δ
(
ω
+
ω
0
)
−
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[\delta (\omega +\omega _{0})-\delta (\omega -\omega _{0})\right]\,}
11
sin
(
ω
0
t
+
θ
)
{\displaystyle \sin(\omega _{0}t+\theta )\,}
j
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
−
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[e^{-j\theta }\delta (\omega +\omega _{0})-e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
12
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
sinc
(
τ
ω
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau \omega }{2\pi }}\right)\,}
13
τ
sinc
(
τ
t
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau t}{2\pi }}\right)\,}
2
π
rect
(
ω
τ
)
{\displaystyle 2\pi {\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
14
(
1
−
2
|
t
|
τ
)
rect
(
t
τ
)
{\displaystyle \left(1-{\frac {2|t|}{\tau }}\right){\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
2
sinc
2
(
τ
ω
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau \omega }{4\pi }}\right)\,}
15
τ
2
sinc
2
(
τ
t
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau t}{4\pi }}\right)\,}
2
π
(
1
−
2
|
ω
|
τ
)
rect
(
ω
τ
)
{\displaystyle 2\pi \left(1-{\frac {2|\omega |}{\tau }}\right){\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
16
e
−
a
|
t
|
,
ℜ
{
a
}
>
0
{\displaystyle e^{-a|t|},\Re \{a\}>0\,}
2
a
a
2
+
ω
2
{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}\,}
注释
sinc
(
x
)
=
sin
(
π
x
)
/
(
π
x
)
{\displaystyle {\mbox{sinc}}(x)=\sin(\pi x)/(\pi x)}
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)}
是宽度为
τ
{\displaystyle \tau }
的矩形脉冲函数。
u
(
t
)
{\displaystyle u(t)}
是海维赛德阶跃函数
δ
(
t
)
{\displaystyle \delta (t)}
是狄拉克δ函数
此框:
查看
•
讨论
•
编辑
离散时间傅里叶变换 (DTFT)
[
编辑
|
编辑源代码
]
DTFT 表格
[
编辑
|
编辑源代码
]
时域
x
[
n
]
{\displaystyle x[n]\,}
其中
n
∈
Z
{\displaystyle n\in \mathbb {Z} }
频域
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
其中
ω
∈
R
{\displaystyle \omega \in \mathbb {R} }
备注
1
2
π
∫
−
π
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
{\displaystyle {\frac {1}{2\pi }}\int _{-\pi }^{\pi }{X\left(e^{j\omega }\right)}e^{j\omega n}d\omega }
∑
n
=
−
∞
∞
x
[
n
]
e
−
j
ω
n
{\displaystyle \sum _{n=-\infty }^{\infty }{x[n]e^{-j\omega n}}}
定义
x
[
n
]
=
{
1
,
|
n
|
≤
M
0
,
otherwise
{\displaystyle x[n]={\begin{cases}1,&|n|\leq M\\0,&{\text{otherwise}}\end{cases}}}
sin
(
ω
(
2
M
+
1
2
)
)
sin
(
ω
2
)
{\displaystyle {\frac {\sin \left(\omega \left({\frac {2M+1}{2}}\right)\right)}{\sin \left({\frac {\omega }{2}}\right)}}}
α
n
u
[
n
]
{\displaystyle \alpha ^{n}u\left[n\right]}
1
1
−
α
e
−
j
ω
{\displaystyle {\frac {1}{1-\alpha e^{-j\omega }}}}
δ
[
n
]
{\displaystyle \delta [n]}
1
{\displaystyle 1\!}
这里
δ
[
n
]
{\displaystyle \delta [n]}
表示 delta 函数
当
n
=
0
{\displaystyle n=0}
时为 1,否则为 0。
u
[
n
]
=
{
0
for
n
<
0
1
for
n
≥
0
{\displaystyle u[n]={\begin{cases}0&{\text{for }}n<0\\1&{\text{for }}n\geq 0\end{cases}}}
1
1
−
e
−
j
ω
+
π
∑
p
=
−
∞
∞
δ
(
ω
−
2
π
p
)
{\displaystyle {\frac {1}{1-e^{-j\omega }}}+\pi \sum _{p=-\infty }^{\infty }{\delta \left(\omega -2\pi p\right)}}
1
π
n
sin
(
W
n
)
,
0
<
W
≤
π
{\displaystyle {\frac {1}{\pi n}}\sin \left(Wn\right),\;\;\;\;0<W\leq \pi }
X
(
e
j
ω
)
=
{
1
,
|
ω
|
≤
W
0
,
W
<
|
ω
|
≤
π
{\displaystyle X(e^{j\omega })={\begin{cases}1,&|\omega |\leq W\\0,&W<|\omega |\leq \pi \end{cases}}}
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
是 2π 周期的
(
n
+
1
)
α
n
u
[
n
]
{\displaystyle (n+1)\alpha ^{n}u\left[n\right]}
1
(
1
−
α
e
−
j
ω
)
2
{\displaystyle {\frac {1}{(1-\alpha e^{-j\omega })^{2}}}}
DTFT 性质
[
edit
|
edit source
]
性质
时域
x
[
n
]
{\displaystyle x[n]\!}
频域
X
(
ω
)
{\displaystyle X(\omega )\!}
备注
线性
a
x
[
n
]
+
b
y
[
n
]
{\displaystyle ax[n]+by[n]\!}
a
X
(
e
i
ω
)
+
b
Y
(
e
i
ω
)
{\displaystyle aX(e^{i\omega })+bY(e^{i\omega })\!}
时移
x
[
n
−
k
]
{\displaystyle x[n-k]\!}
X
(
e
i
ω
)
e
−
i
ω
k
{\displaystyle X(e^{i\omega })e^{-i\omega k}\!}
整数
k
频移
x
[
n
]
e
i
a
n
{\displaystyle x[n]e^{ian}\!}
X
(
e
i
(
ω
−
a
)
)
{\displaystyle X(e^{i(\omega -a)})\!}
实数
a
时间反转
x
[
−
n
]
{\displaystyle x[-n]\!}
X
(
e
−
i
ω
)
{\displaystyle X(e^{-i\omega })\!}
时间共轭
x
[
n
]
∗
{\displaystyle x[n]^{*}\!}
X
(
e
−
i
ω
)
∗
{\displaystyle X(e^{-i\omega })^{*}\!}
时间反转和共轭
x
[
−
n
]
∗
{\displaystyle x[-n]^{*}\!}
X
(
e
i
ω
)
∗
{\displaystyle X(e^{i\omega })^{*}\!}
频率导数
n
i
x
[
n
]
{\displaystyle {\frac {n}{i}}x[n]\!}
d
X
(
e
i
ω
)
d
ω
{\displaystyle {\frac {dX(e^{i\omega })}{d\omega }}\!}
频率积分
i
n
x
[
n
]
{\displaystyle {\frac {i}{n}}x[n]\!}
∫
−
π
ω
X
(
e
i
ϑ
)
d
ϑ
{\displaystyle \int _{-\pi }^{\omega }X(e^{i\vartheta })d\vartheta \!}
时间卷积
x
[
n
]
∗
y
[
n
]
{\displaystyle x[n]*y[n]\!}
X
(
e
i
ω
)
⋅
Y
(
e
i
ω
)
{\displaystyle X(e^{i\omega })\cdot Y(e^{i\omega })\!}
时间相乘
x
[
n
]
⋅
y
[
n
]
{\displaystyle x[n]\cdot y[n]\!}
1
2
π
X
(
e
i
ω
)
∗
Y
(
e
i
ω
)
{\displaystyle {\frac {1}{2\pi }}X(e^{i\omega })*Y(e^{i\omega })\!}
相关
ρ
x
y
[
n
]
=
x
[
−
n
]
∗
∗
y
[
n
]
{\displaystyle \rho _{xy}[n]=x[-n]^{*}*y[n]\!}
R
x
y
(
ω
)
=
X
(
e
i
ω
)
∗
⋅
Y
(
e
i
ω
)
{\displaystyle R_{xy}(\omega )=X(e^{i\omega })^{*}\cdot Y(e^{i\omega })\!}
其中
∗
{\displaystyle *\!}
是两个信号之间的卷积。
x
[
n
]
∗
{\displaystyle x[n]^{*}\!}
是函数
x[n]
的复共轭。
ρ
x
y
[
n
]
{\displaystyle \rho _{xy}[n]\!}
表示
x[n]
和
y[n]
之间的相关性。
离散傅里叶变换 (DFT)
[
编辑
|
编辑源代码
]
DFT 表格
[
编辑
|
编辑源代码
]
时域
x[n]
频域
X[k]
注释
x
n
≡
1
N
∑
k
=
0
N
−
1
X
k
⋅
e
i
2
π
k
n
/
N
{\displaystyle x_{n}\equiv {\frac {1}{N}}\sum _{k=0}^{N-1}X_{k}\cdot e^{i2\pi kn/N}}
X
k
≡
∑
n
=
0
N
−
1
x
n
⋅
e
−
i
2
π
k
n
/
N
{\displaystyle X_{k}\equiv \sum _{n=0}^{N-1}x_{n}\cdot e^{-i2\pi kn/N}}
DFT 定义
x
n
⋅
e
i
2
π
k
n
/
N
{\displaystyle x_{n}\cdot e^{i2\pi kn/N}\,}
X
n
−
k
{\displaystyle X_{n-k}\,}
移位定理
x
n
−
k
{\displaystyle x_{n-k}\,}
X
k
⋅
e
−
i
2
π
k
n
/
N
{\displaystyle X_{k}\cdot e^{-i2\pi kn/N}}
x
n
∈
R
{\displaystyle x_{n}\in \mathbf {R} }
X
k
=
X
N
−
k
∗
{\displaystyle X_{k}=X_{N-k}^{*}\,}
实数 DFT
a
n
{\displaystyle a^{n}\,}
1
−
a
N
1
−
a
⋅
e
−
i
2
π
k
/
N
{\displaystyle {\frac {1-a^{N}}{1-a\cdot e^{-i2\pi k/N}}}}
(
N
−
1
n
)
{\displaystyle {N-1 \choose n}\,}
(
1
+
e
−
i
2
π
k
/
N
)
N
−
1
{\displaystyle \left(1+e^{-i2\pi k/N}\right)^{N-1}\,}
Z 变换
[
编辑
|
编辑源代码
]
Z 变换表格
[
编辑
|
编辑源代码
]
这里
u
[
n
]
=
1
{\displaystyle u[n]=1}
对于
n
>=
0
{\displaystyle n>=0}
,
u
[
n
]
=
0
{\displaystyle u[n]=0}
对于
n
<
0
{\displaystyle n<0}
δ
[
n
]
=
1
{\displaystyle \delta [n]=1}
对于
n
=
0
{\displaystyle n=0}
,
δ
[
n
]
=
0
{\displaystyle \delta [n]=0}
否则
信号,
x
[
n
]
{\displaystyle x[n]}
Z 变换,
X
(
z
)
{\displaystyle X(z)}
ROC
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
all
z
{\displaystyle {\mbox{all }}z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
5
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
6
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
7
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
8
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
9
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
10
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
11
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
12
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
13
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
14
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
15
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
16
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
17
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
18
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
20
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
双线性变换
[
编辑
|
编辑源代码
]
参见
[1]
离散余弦变换 (DCT)
[
编辑
|
编辑源代码
]
哈尔变换
[
编辑
|
编辑源代码
]
分类
:
书籍: 数字信号处理
华夏公益教科书