DirectX/10.0/Direct3D/光照贴图
DirectX 11 中的光照贴图是使用辅助纹理或数据文件来创建快速查找表的过程,以创建几乎不需要处理即可实现的独特照明效果。由于我们使用辅助来源作为我们照明的基础,我们可以从我们的应用程序中删除任何其他光照计算。这可以让我们获得惊人的速度。
正如我们在上一个教程中介绍的多重纹理映射一样,我们只需要稍微更改一下代码,就可以在本教程中实现光照贴图。
使用光照贴图,我们需要两种纹理。第一种纹理是基础颜色纹理。我们将在本教程中使用以下纹理:
我们需要的第二种纹理是光照贴图。通常,这只是一个黑白纹理,白色代表每个像素的光照强度。我创建了一个聚光灯风格的光照贴图,我们将在本教程中使用它。
一旦我们有了颜色纹理和光照贴图,我们就可以在像素着色器中将它们组合起来,生成光照贴图纹理。着色器非常简单,因为我们只是将两个像素相乘,这将产生以下输出。
光照贴图顶点着色器与上一个教程中的多重纹理顶点着色器相同。唯一改变的是名称。
////////////////////////////////////////////////////////////////////////////////
// Filename: lightmap.vs
////////////////////////////////////////////////////////////////////////////////
/////////////
// GLOBALS //
/////////////
cbuffer MatrixBuffer
{
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix;
};
//////////////
// TYPEDEFS //
//////////////
struct VertexInputType
{
float4 position : POSITION;
float2 tex : TEXCOORD0;
};
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
};
////////////////////////////////////////////////////////////////////////////////
// Vertex Shader
////////////////////////////////////////////////////////////////////////////////
PixelInputType LightMapVertexShader(VertexInputType input)
{
PixelInputType output;
// Change the position vector to be 4 units for proper matrix calculations.
input.position.w = 1.0f;
// Calculate the position of the vertex against the world, view, and projection matrices.
output.position = mul(input.position, worldMatrix);
output.position = mul(output.position, viewMatrix);
output.position = mul(output.position, projectionMatrix);
// Store the texture coordinates for the pixel shader.
output.tex = input.tex;
return output;
}
////////////////////////////////////////////////////////////////////////////////
// Filename: lightmap.ps
////////////////////////////////////////////////////////////////////////////////
/////////////
// GLOBALS //
/////////////
Texture2D shaderTextures[2];
SamplerState SampleType;
//////////////
// TYPEDEFS //
//////////////
struct PixelInputType
{
float4 position : SV_POSITION;
float2 tex : TEXCOORD0;
};
光照贴图像素着色器非常简单。它将颜色纹理像素和光照贴图纹理值相乘以获得所需的输出。这与普通的混合纹理没什么不同,只是不需要校正伽马。
////////////////////////////////////////////////////////////////////////////////
// Pixel Shader
////////////////////////////////////////////////////////////////////////////////
float4 LightMapPixelShader(PixelInputType input) : SV_TARGET
{
float4 color;
float4 lightColor;
float4 finalColor;
// Get the pixel color from the color texture.
color = shaderTextures[0].Sample(SampleType, input.tex);
// Get the pixel color from the light map.
lightColor = shaderTextures[1].Sample(SampleType, input.tex);
// Blend the two pixels together.
finalColor = color * lightColor;
return finalColor;
}
LightMapShaderClass 只是上一个教程中的 MultiTextureShaderClass,现在已经更新为光照贴图。
////////////////////////////////////////////////////////////////////////////////
// Filename: lightmapshaderclass.h
////////////////////////////////////////////////////////////////////////////////
#ifndef _LIGHTMAPSHADERCLASS_H_
#define _LIGHTMAPSHADERCLASS_H_
//////////////
// INCLUDES //
//////////////
#include <d3d11.h>
#include <d3dx10math.h>
#include <d3dx11async.h>
#include <fstream>
using namespace std;
////////////////////////////////////////////////////////////////////////////////
// Class name: LightMapShaderClass
////////////////////////////////////////////////////////////////////////////////
class LightMapShaderClass
{
private:
struct MatrixBufferType
{
D3DXMATRIX world;
D3DXMATRIX view;
D3DXMATRIX projection;
};
public:
LightMapShaderClass();
LightMapShaderClass(const LightMapShaderClass&);
~LightMapShaderClass();
bool Initialize(ID3D11Device*, HWND);
void Shutdown();
bool Render(ID3D11DeviceContext*, int, D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D11ShaderResourceView**);
private:
bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*);
void ShutdownShader();
void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*);
bool SetShaderParameters(ID3D11DeviceContext*, D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D11ShaderResourceView**);
void RenderShader(ID3D11DeviceContext*, int);
private:
ID3D11VertexShader* m_vertexShader;
ID3D11PixelShader* m_pixelShader;
ID3D11InputLayout* m_layout;
ID3D11Buffer* m_matrixBuffer;
ID3D11SamplerState* m_sampleState;
};
#endif
我只介绍一下与上一个教程的不同之处。除了函数名之外,只有几个更改。
////////////////////////////////////////////////////////////////////////////////
// Filename: lightmapshaderclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "lightmapshaderclass.h"
LightMapShaderClass::LightMapShaderClass()
{
m_vertexShader = 0;
m_pixelShader = 0;
m_layout = 0;
m_matrixBuffer = 0;
m_sampleState = 0;
}
LightMapShaderClass::LightMapShaderClass(const LightMapShaderClass& other)
{
}
LightMapShaderClass::~LightMapShaderClass()
{
}
bool LightMapShaderClass::Initialize(ID3D11Device* device, HWND hwnd)
{
bool result;
我们现在加载 lightmap.vs 和 lightmap.ps HLSL 着色器文件。
// Initialize the vertex and pixel shaders.
result = InitializeShader(device, hwnd, L"../Engine/lightmap.vs", L"../Engine/lightmap.ps");
if(!result)
{
return false;
}
return true;
}
void LightMapShaderClass::Shutdown()
{
// Shutdown the vertex and pixel shaders as well as the related objects.
ShutdownShader();
return;
}
bool LightMapShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, D3DXMATRIX worldMatrix,
D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix, ID3D11ShaderResourceView** textureArray)
{
bool result;
// Set the shader parameters that it will use for rendering.
result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, textureArray);
if(!result)
{
return false;
}
// Now render the prepared buffers with the shader.
RenderShader(deviceContext, indexCount);
return true;
}
bool LightMapShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename)
{
HRESULT result;
ID3D10Blob* errorMessage;
ID3D10Blob* vertexShaderBuffer;
ID3D10Blob* pixelShaderBuffer;
D3D11_INPUT_ELEMENT_DESC polygonLayout[2];
unsigned int numElements;
D3D11_BUFFER_DESC matrixBufferDesc;
D3D11_SAMPLER_DESC samplerDesc;
// Initialize the pointers this function will use to null.
errorMessage = 0;
vertexShaderBuffer = 0;
pixelShaderBuffer = 0;
光照贴图顶点着色器在这里加载。
// Compile the vertex shader code.
result = D3DX11CompileFromFile(vsFilename, NULL, NULL, "LightMapVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS,
0, NULL, &vertexShaderBuffer, &errorMessage, NULL);
if(FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if(errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, vsFilename);
}
// If there was nothing in the error message then it simply could not find the shader file itself.
else
{
MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK);
}
return false;
}
光照贴图像素着色器在这里加载。
// Compile the pixel shader code.
result = D3DX11CompileFromFile(psFilename, NULL, NULL, "LightMapPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS,
0, NULL, &pixelShaderBuffer, &errorMessage, NULL);
if(FAILED(result))
{
// If the shader failed to compile it should have writen something to the error message.
if(errorMessage)
{
OutputShaderErrorMessage(errorMessage, hwnd, psFilename);
}
// If there was nothing in the error message then it simply could not find the file itself.
else
{
MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK);
}
return false;
}
// Create the vertex shader from the buffer.
result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL,
&m_vertexShader);
if(FAILED(result))
{
return false;
}
// Create the vertex shader from the buffer.
result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL,
&m_pixelShader);
if(FAILED(result))
{
return false;
}
// Create the vertex input layout description.
// This setup needs to match the VertexType stucture in the ModelClass and in the shader.
polygonLayout[0].SemanticName = "POSITION";
polygonLayout[0].SemanticIndex = 0;
polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT;
polygonLayout[0].InputSlot = 0;
polygonLayout[0].AlignedByteOffset = 0;
polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[0].InstanceDataStepRate = 0;
polygonLayout[1].SemanticName = "TEXCOORD";
polygonLayout[1].SemanticIndex = 0;
polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT;
polygonLayout[1].InputSlot = 0;
polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT;
polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
polygonLayout[1].InstanceDataStepRate = 0;
// Get a count of the elements in the layout.
numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]);
// Create the vertex input layout.
result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(),
vertexShaderBuffer->GetBufferSize(), &m_layout);
if(FAILED(result))
{
return false;
}
// Release the vertex shader buffer and pixel shader buffer since they are no longer needed.
vertexShaderBuffer->Release();
vertexShaderBuffer = 0;
pixelShaderBuffer->Release();
pixelShaderBuffer = 0;
// Setup the description of the matrix dynamic constant buffer that is in the vertex shader.
matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC;
matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType);
matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
matrixBufferDesc.MiscFlags = 0;
matrixBufferDesc.StructureByteStride = 0;
// Create the matrix constant buffer pointer so we can access the vertex shader constant buffer from within this class.
result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer);
if(FAILED(result))
{
return false;
}
// Create a texture sampler state description.
samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
samplerDesc.MipLODBias = 0.0f;
samplerDesc.MaxAnisotropy = 1;
samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS;
samplerDesc.BorderColor[0] = 0;
samplerDesc.BorderColor[1] = 0;
samplerDesc.BorderColor[2] = 0;
samplerDesc.BorderColor[3] = 0;
samplerDesc.MinLOD = 0;
samplerDesc.MaxLOD = D3D11_FLOAT32_MAX;
// Create the texture sampler state.
result = device->CreateSamplerState(&samplerDesc, &m_sampleState);
if(FAILED(result))
{
return false;
}
return true;
}
void LightMapShaderClass::ShutdownShader()
{
// Release the sampler state.
if(m_sampleState)
{
m_sampleState->Release();
m_sampleState = 0;
}
// Release the matrix constant buffer.
if(m_matrixBuffer)
{
m_matrixBuffer->Release();
m_matrixBuffer = 0;
}
// Release the layout.
if(m_layout)
{
m_layout->Release();
m_layout = 0;
}
// Release the pixel shader.
if(m_pixelShader)
{
m_pixelShader->Release();
m_pixelShader = 0;
}
// Release the vertex shader.
if(m_vertexShader)
{
m_vertexShader->Release();
m_vertexShader = 0;
}
return;
}
void LightMapShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename)
{
char* compileErrors;
unsigned long bufferSize, i;
ofstream fout;
// Get a pointer to the error message text buffer.
compileErrors = (char*)(errorMessage->GetBufferPointer());
// Get the length of the message.
bufferSize = errorMessage->GetBufferSize();
// Open a file to write the error message to.
fout.open("shader-error.txt");
// Write out the error message.
for(i=0; i<bufferSize; i++)
{
fout Release();
errorMessage = 0;
// Pop a message up on the screen to notify the user to check the text file for compile errors.
MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK);
return;
}
bool LightMapShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, D3DXMATRIX worldMatrix,
D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix,
ID3D11ShaderResourceView** textureArray)
{
HRESULT result;
D3D11_MAPPED_SUBRESOURCE mappedResource;
MatrixBufferType* dataPtr;
unsigned int bufferNumber;
// Transpose the matrices to prepare them for the shader.
D3DXMatrixTranspose(&worldMatrix, &worldMatrix);
D3DXMatrixTranspose(&viewMatrix, &viewMatrix);
D3DXMatrixTranspose(&projectionMatrix, &projectionMatrix);
// Lock the matrix constant buffer so it can be written to.
result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource);
if(FAILED(result))
{
return false;
}
// Get a pointer to the data in the constant buffer.
dataPtr = (MatrixBufferType*)mappedResource.pData;
// Copy the matrices into the constant buffer.
dataPtr->world = worldMatrix;
dataPtr->view = viewMatrix;
dataPtr->projection = projectionMatrix;
// Unlock the matrix constant buffer.
deviceContext->Unmap(m_matrixBuffer, 0);
// Set the position of the matrix constant buffer in the vertex shader.
bufferNumber = 0;
// Now set the matrix constant buffer in the vertex shader with the updated values.
deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
纹理数组与上一个教程相同。但是,纹理数组中不再是两个颜色纹理,而是一个颜色纹理,另一个纹理是光照贴图。
// Set shader texture array resource in the pixel shader.
deviceContext->PSSetShaderResources(0, 2, textureArray);
return true;
}
void LightMapShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount)
{
// Set the vertex input layout.
deviceContext->IASetInputLayout(m_layout);
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext->VSSetShader(m_vertexShader, NULL, 0);
deviceContext->PSSetShader(m_pixelShader, NULL, 0);
// Set the sampler state in the pixel shader.
deviceContext->PSSetSamplers(0, 1, &m_sampleState);
// Render the triangles.
deviceContext->DrawIndexed(indexCount, 0, 0);
return;
}
//////////////////////////////////////////////////////////////////////////////// // Filename: graphicsclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _GRAPHICSCLASS_H_ #define _GRAPHICSCLASS_H_ ///////////// // GLOBALS // ///////////// const bool FULL_SCREEN = true; const bool VSYNC_ENABLED = true; const float SCREEN_DEPTH = 1000.0f; const float SCREEN_NEAR = 0.1f; /////////////////////// // MY CLASS INCLUDES // /////////////////////// #include "d3dclass.h" #include "cameraclass.h" #include "modelclass.h"
LightMapShaderClass 的头文件现在包含在 GraphicsClass 头文件中。
#include "lightmapshaderclass.h"
////////////////////////////////////////////////////////////////////////////////
// Class name: GraphicsClass
////////////////////////////////////////////////////////////////////////////////
class GraphicsClass
{
public:
GraphicsClass();
GraphicsClass(const GraphicsClass&);
~GraphicsClass();
bool Initialize(int, int, HWND);
void Shutdown();
bool Frame();
bool Render();
private:
D3DClass* m_D3D;
CameraClass* m_Camera;
ModelClass* m_Model;
我们有一个新的 LightMapShaderClass 对象变量。
LightMapShaderClass* m_LightMapShader; }; #endif
我只介绍一下与上一个教程的不同之处。
////////////////////////////////////////////////////////////////////////////////
// Filename: graphicsclass.cpp
////////////////////////////////////////////////////////////////////////////////
#include "graphicsclass.h"
GraphicsClass::GraphicsClass()
{
m_D3D = 0;
m_Camera = 0;
m_Model = 0;
新的 LightMapShaderClass 对象在类构造函数中初始化。
m_LightMapShader = 0;
}
bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd)
{
bool result;
D3DXMATRIX baseViewMatrix;
// Create the Direct3D object.
m_D3D = new D3DClass;
if(!m_D3D)
{
return false;
}
// Initialize the Direct3D object.
result = m_D3D->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR);
if(!result)
{
MessageBox(hwnd, L"Could not initialize Direct3D", L"Error", MB_OK);
return false;
}
// Create the camera object.
m_Camera = new CameraClass;
if(!m_Camera)
{
return false;
}
// Initialize a base view matrix with the camera for 2D user interface rendering.
m_Camera->SetPosition(0.0f, 0.0f, -1.0f);
m_Camera->Render();
m_Camera->GetViewMatrix(baseViewMatrix);
// Create the model object.
m_Model = new ModelClass;
if(!m_Model)
{
return false;
}
ModelClass 对象以新的 light01.dds 光照贴图纹理作为输入,用于此模型的光照贴图着色。
// Initialize the model object.
result = m_Model->Initialize(m_D3D->GetDevice(), "../Engine/data/square.txt", L"../Engine/data/stone01.dds",
L"../Engine/data/light01.dds");
if(!result)
{
MessageBox(hwnd, L"Could not initialize the model object.", L"Error", MB_OK);
return false;
}
新的 LightMapShaderClass 对象在这里创建和初始化。
// Create the light map shader object.
m_LightMapShader = new LightMapShaderClass;
if(!m_LightMapShader)
{
return false;
}
// Initialize the light map shader object.
result = m_LightMapShader->Initialize(m_D3D->GetDevice(), hwnd);
if(!result)
{
MessageBox(hwnd, L"Could not initialize the light map shader object.", L"Error", MB_OK);
return false;
}
return true;
}
void GraphicsClass::Shutdown()
{
LightMapShaderClass 对象在 Shutdown 函数中释放。
// Release the light map shader object.
if(m_LightMapShader)
{
m_LightMapShader->Shutdown();
delete m_LightMapShader;
m_LightMapShader = 0;
}
// Release the model object.
if(m_Model)
{
m_Model->Shutdown();
delete m_Model;
m_Model = 0;
}
// Release the camera object.
if(m_Camera)
{
delete m_Camera;
m_Camera = 0;
}
// Release the D3D object.
if(m_D3D)
{
m_D3D->Shutdown();
delete m_D3D;
m_D3D = 0;
}
return;
}
bool GraphicsClass::Render()
{
D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix;
// Clear the buffers to begin the scene.
m_D3D->BeginScene(0.0f, 0.0f, 0.0f, 1.0f);
// Generate the view matrix based on the camera's position.
m_Camera->Render();
// Get the world, view, projection, and ortho matrices from the camera and D3D objects.
m_D3D->GetWorldMatrix(worldMatrix);
m_Camera->GetViewMatrix(viewMatrix);
m_D3D->GetProjectionMatrix(projectionMatrix);
m_D3D->GetOrthoMatrix(orthoMatrix);
// Put the model vertex and index buffers on the graphics pipeline to prepare them for drawing.
m_Model->Render(m_D3D->GetDeviceContext());
模型在这里使用光照贴图着色器渲染。
// Render the model using the light map shader. m_LightMapShader->Render(m_D3D->GetDeviceContext(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, m_Model->GetTextureArray()); // Present the rendered scene to the screen. m_D3D->EndScene(); return true; }
本教程与上一个混合教程没有太大区别,但它产生了非常有用的效果,在处理速度方面非常高效。
1. 重新编译代码,确保屏幕上显示光照贴图纹理。
2. 创建一些自己的光照贴图并尝试一下。
3. 将像素着色器中最终输出像素的值乘以 2.0。注意,通过这样做,你可以创建更强和更柔和的照明效果。