DirectX/10.0/Direct3D/光照贴图
DirectX 11 中的光照贴图是使用辅助纹理或数据文件来创建快速查找表的过程,以创建几乎不需要处理即可实现的独特照明效果。由于我们使用辅助来源作为我们照明的基础,我们可以从我们的应用程序中删除任何其他光照计算。这可以让我们获得惊人的速度。
正如我们在上一个教程中介绍的多重纹理映射一样,我们只需要稍微更改一下代码,就可以在本教程中实现光照贴图。
使用光照贴图,我们需要两种纹理。第一种纹理是基础颜色纹理。我们将在本教程中使用以下纹理:
我们需要的第二种纹理是光照贴图。通常,这只是一个黑白纹理,白色代表每个像素的光照强度。我创建了一个聚光灯风格的光照贴图,我们将在本教程中使用它。
一旦我们有了颜色纹理和光照贴图,我们就可以在像素着色器中将它们组合起来,生成光照贴图纹理。着色器非常简单,因为我们只是将两个像素相乘,这将产生以下输出。
光照贴图顶点着色器与上一个教程中的多重纹理顶点着色器相同。唯一改变的是名称。
//////////////////////////////////////////////////////////////////////////////// // Filename: lightmap.vs //////////////////////////////////////////////////////////////////////////////// ///////////// // GLOBALS // ///////////// cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; ////////////// // TYPEDEFS // ////////////// struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; }; //////////////////////////////////////////////////////////////////////////////// // Vertex Shader //////////////////////////////////////////////////////////////////////////////// PixelInputType LightMapVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; return output; }
//////////////////////////////////////////////////////////////////////////////// // Filename: lightmap.ps //////////////////////////////////////////////////////////////////////////////// ///////////// // GLOBALS // ///////////// Texture2D shaderTextures[2]; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; };
光照贴图像素着色器非常简单。它将颜色纹理像素和光照贴图纹理值相乘以获得所需的输出。这与普通的混合纹理没什么不同,只是不需要校正伽马。
//////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 LightMapPixelShader(PixelInputType input) : SV_TARGET { float4 color; float4 lightColor; float4 finalColor; // Get the pixel color from the color texture. color = shaderTextures[0].Sample(SampleType, input.tex); // Get the pixel color from the light map. lightColor = shaderTextures[1].Sample(SampleType, input.tex); // Blend the two pixels together. finalColor = color * lightColor; return finalColor; }
LightMapShaderClass 只是上一个教程中的 MultiTextureShaderClass,现在已经更新为光照贴图。
//////////////////////////////////////////////////////////////////////////////// // Filename: lightmapshaderclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _LIGHTMAPSHADERCLASS_H_ #define _LIGHTMAPSHADERCLASS_H_ ////////////// // INCLUDES // ////////////// #include <d3d11.h> #include <d3dx10math.h> #include <d3dx11async.h> #include <fstream> using namespace std; //////////////////////////////////////////////////////////////////////////////// // Class name: LightMapShaderClass //////////////////////////////////////////////////////////////////////////////// class LightMapShaderClass { private: struct MatrixBufferType { D3DXMATRIX world; D3DXMATRIX view; D3DXMATRIX projection; }; public: LightMapShaderClass(); LightMapShaderClass(const LightMapShaderClass&); ~LightMapShaderClass(); bool Initialize(ID3D11Device*, HWND); void Shutdown(); bool Render(ID3D11DeviceContext*, int, D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D11ShaderResourceView**); private: bool InitializeShader(ID3D11Device*, HWND, WCHAR*, WCHAR*); void ShutdownShader(); void OutputShaderErrorMessage(ID3D10Blob*, HWND, WCHAR*); bool SetShaderParameters(ID3D11DeviceContext*, D3DXMATRIX, D3DXMATRIX, D3DXMATRIX, ID3D11ShaderResourceView**); void RenderShader(ID3D11DeviceContext*, int); private: ID3D11VertexShader* m_vertexShader; ID3D11PixelShader* m_pixelShader; ID3D11InputLayout* m_layout; ID3D11Buffer* m_matrixBuffer; ID3D11SamplerState* m_sampleState; }; #endif
我只介绍一下与上一个教程的不同之处。除了函数名之外,只有几个更改。
//////////////////////////////////////////////////////////////////////////////// // Filename: lightmapshaderclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "lightmapshaderclass.h" LightMapShaderClass::LightMapShaderClass() { m_vertexShader = 0; m_pixelShader = 0; m_layout = 0; m_matrixBuffer = 0; m_sampleState = 0; } LightMapShaderClass::LightMapShaderClass(const LightMapShaderClass& other) { } LightMapShaderClass::~LightMapShaderClass() { } bool LightMapShaderClass::Initialize(ID3D11Device* device, HWND hwnd) { bool result;
我们现在加载 lightmap.vs 和 lightmap.ps HLSL 着色器文件。
// Initialize the vertex and pixel shaders. result = InitializeShader(device, hwnd, L"../Engine/lightmap.vs", L"../Engine/lightmap.ps"); if(!result) { return false; } return true; } void LightMapShaderClass::Shutdown() { // Shutdown the vertex and pixel shaders as well as the related objects. ShutdownShader(); return; } bool LightMapShaderClass::Render(ID3D11DeviceContext* deviceContext, int indexCount, D3DXMATRIX worldMatrix, D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix, ID3D11ShaderResourceView** textureArray) { bool result; // Set the shader parameters that it will use for rendering. result = SetShaderParameters(deviceContext, worldMatrix, viewMatrix, projectionMatrix, textureArray); if(!result) { return false; } // Now render the prepared buffers with the shader. RenderShader(deviceContext, indexCount); return true; } bool LightMapShaderClass::InitializeShader(ID3D11Device* device, HWND hwnd, WCHAR* vsFilename, WCHAR* psFilename) { HRESULT result; ID3D10Blob* errorMessage; ID3D10Blob* vertexShaderBuffer; ID3D10Blob* pixelShaderBuffer; D3D11_INPUT_ELEMENT_DESC polygonLayout[2]; unsigned int numElements; D3D11_BUFFER_DESC matrixBufferDesc; D3D11_SAMPLER_DESC samplerDesc; // Initialize the pointers this function will use to null. errorMessage = 0; vertexShaderBuffer = 0; pixelShaderBuffer = 0;
光照贴图顶点着色器在这里加载。
// Compile the vertex shader code. result = D3DX11CompileFromFile(vsFilename, NULL, NULL, "LightMapVertexShader", "vs_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, NULL, &vertexShaderBuffer, &errorMessage, NULL); if(FAILED(result)) { // If the shader failed to compile it should have writen something to the error message. if(errorMessage) { OutputShaderErrorMessage(errorMessage, hwnd, vsFilename); } // If there was nothing in the error message then it simply could not find the shader file itself. else { MessageBox(hwnd, vsFilename, L"Missing Shader File", MB_OK); } return false; }
光照贴图像素着色器在这里加载。
// Compile the pixel shader code. result = D3DX11CompileFromFile(psFilename, NULL, NULL, "LightMapPixelShader", "ps_5_0", D3D10_SHADER_ENABLE_STRICTNESS, 0, NULL, &pixelShaderBuffer, &errorMessage, NULL); if(FAILED(result)) { // If the shader failed to compile it should have writen something to the error message. if(errorMessage) { OutputShaderErrorMessage(errorMessage, hwnd, psFilename); } // If there was nothing in the error message then it simply could not find the file itself. else { MessageBox(hwnd, psFilename, L"Missing Shader File", MB_OK); } return false; } // Create the vertex shader from the buffer. result = device->CreateVertexShader(vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), NULL, &m_vertexShader); if(FAILED(result)) { return false; } // Create the vertex shader from the buffer. result = device->CreatePixelShader(pixelShaderBuffer->GetBufferPointer(), pixelShaderBuffer->GetBufferSize(), NULL, &m_pixelShader); if(FAILED(result)) { return false; } // Create the vertex input layout description. // This setup needs to match the VertexType stucture in the ModelClass and in the shader. polygonLayout[0].SemanticName = "POSITION"; polygonLayout[0].SemanticIndex = 0; polygonLayout[0].Format = DXGI_FORMAT_R32G32B32_FLOAT; polygonLayout[0].InputSlot = 0; polygonLayout[0].AlignedByteOffset = 0; polygonLayout[0].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[0].InstanceDataStepRate = 0; polygonLayout[1].SemanticName = "TEXCOORD"; polygonLayout[1].SemanticIndex = 0; polygonLayout[1].Format = DXGI_FORMAT_R32G32_FLOAT; polygonLayout[1].InputSlot = 0; polygonLayout[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; polygonLayout[1].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA; polygonLayout[1].InstanceDataStepRate = 0; // Get a count of the elements in the layout. numElements = sizeof(polygonLayout) / sizeof(polygonLayout[0]); // Create the vertex input layout. result = device->CreateInputLayout(polygonLayout, numElements, vertexShaderBuffer->GetBufferPointer(), vertexShaderBuffer->GetBufferSize(), &m_layout); if(FAILED(result)) { return false; } // Release the vertex shader buffer and pixel shader buffer since they are no longer needed. vertexShaderBuffer->Release(); vertexShaderBuffer = 0; pixelShaderBuffer->Release(); pixelShaderBuffer = 0; // Setup the description of the matrix dynamic constant buffer that is in the vertex shader. matrixBufferDesc.Usage = D3D11_USAGE_DYNAMIC; matrixBufferDesc.ByteWidth = sizeof(MatrixBufferType); matrixBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; matrixBufferDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; matrixBufferDesc.MiscFlags = 0; matrixBufferDesc.StructureByteStride = 0; // Create the matrix constant buffer pointer so we can access the vertex shader constant buffer from within this class. result = device->CreateBuffer(&matrixBufferDesc, NULL, &m_matrixBuffer); if(FAILED(result)) { return false; } // Create a texture sampler state description. samplerDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR; samplerDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP; samplerDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP; samplerDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP; samplerDesc.MipLODBias = 0.0f; samplerDesc.MaxAnisotropy = 1; samplerDesc.ComparisonFunc = D3D11_COMPARISON_ALWAYS; samplerDesc.BorderColor[0] = 0; samplerDesc.BorderColor[1] = 0; samplerDesc.BorderColor[2] = 0; samplerDesc.BorderColor[3] = 0; samplerDesc.MinLOD = 0; samplerDesc.MaxLOD = D3D11_FLOAT32_MAX; // Create the texture sampler state. result = device->CreateSamplerState(&samplerDesc, &m_sampleState); if(FAILED(result)) { return false; } return true; } void LightMapShaderClass::ShutdownShader() { // Release the sampler state. if(m_sampleState) { m_sampleState->Release(); m_sampleState = 0; } // Release the matrix constant buffer. if(m_matrixBuffer) { m_matrixBuffer->Release(); m_matrixBuffer = 0; } // Release the layout. if(m_layout) { m_layout->Release(); m_layout = 0; } // Release the pixel shader. if(m_pixelShader) { m_pixelShader->Release(); m_pixelShader = 0; } // Release the vertex shader. if(m_vertexShader) { m_vertexShader->Release(); m_vertexShader = 0; } return; } void LightMapShaderClass::OutputShaderErrorMessage(ID3D10Blob* errorMessage, HWND hwnd, WCHAR* shaderFilename) { char* compileErrors; unsigned long bufferSize, i; ofstream fout; // Get a pointer to the error message text buffer. compileErrors = (char*)(errorMessage->GetBufferPointer()); // Get the length of the message. bufferSize = errorMessage->GetBufferSize(); // Open a file to write the error message to. fout.open("shader-error.txt"); // Write out the error message. for(i=0; i<bufferSize; i++) { fout Release(); errorMessage = 0; // Pop a message up on the screen to notify the user to check the text file for compile errors. MessageBox(hwnd, L"Error compiling shader. Check shader-error.txt for message.", shaderFilename, MB_OK); return; } bool LightMapShaderClass::SetShaderParameters(ID3D11DeviceContext* deviceContext, D3DXMATRIX worldMatrix, D3DXMATRIX viewMatrix, D3DXMATRIX projectionMatrix, ID3D11ShaderResourceView** textureArray) { HRESULT result; D3D11_MAPPED_SUBRESOURCE mappedResource; MatrixBufferType* dataPtr; unsigned int bufferNumber; // Transpose the matrices to prepare them for the shader. D3DXMatrixTranspose(&worldMatrix, &worldMatrix); D3DXMatrixTranspose(&viewMatrix, &viewMatrix); D3DXMatrixTranspose(&projectionMatrix, &projectionMatrix); // Lock the matrix constant buffer so it can be written to. result = deviceContext->Map(m_matrixBuffer, 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedResource); if(FAILED(result)) { return false; } // Get a pointer to the data in the constant buffer. dataPtr = (MatrixBufferType*)mappedResource.pData; // Copy the matrices into the constant buffer. dataPtr->world = worldMatrix; dataPtr->view = viewMatrix; dataPtr->projection = projectionMatrix; // Unlock the matrix constant buffer. deviceContext->Unmap(m_matrixBuffer, 0); // Set the position of the matrix constant buffer in the vertex shader. bufferNumber = 0; // Now set the matrix constant buffer in the vertex shader with the updated values. deviceContext->VSSetConstantBuffers(bufferNumber, 1, &m_matrixBuffer);
纹理数组与上一个教程相同。但是,纹理数组中不再是两个颜色纹理,而是一个颜色纹理,另一个纹理是光照贴图。
// Set shader texture array resource in the pixel shader. deviceContext->PSSetShaderResources(0, 2, textureArray); return true; } void LightMapShaderClass::RenderShader(ID3D11DeviceContext* deviceContext, int indexCount) { // Set the vertex input layout. deviceContext->IASetInputLayout(m_layout); // Set the vertex and pixel shaders that will be used to render this triangle. deviceContext->VSSetShader(m_vertexShader, NULL, 0); deviceContext->PSSetShader(m_pixelShader, NULL, 0); // Set the sampler state in the pixel shader. deviceContext->PSSetSamplers(0, 1, &m_sampleState); // Render the triangles. deviceContext->DrawIndexed(indexCount, 0, 0); return; }
//////////////////////////////////////////////////////////////////////////////// // Filename: graphicsclass.h //////////////////////////////////////////////////////////////////////////////// #ifndef _GRAPHICSCLASS_H_ #define _GRAPHICSCLASS_H_ ///////////// // GLOBALS // ///////////// const bool FULL_SCREEN = true; const bool VSYNC_ENABLED = true; const float SCREEN_DEPTH = 1000.0f; const float SCREEN_NEAR = 0.1f; /////////////////////// // MY CLASS INCLUDES // /////////////////////// #include "d3dclass.h" #include "cameraclass.h" #include "modelclass.h"
LightMapShaderClass 的头文件现在包含在 GraphicsClass 头文件中。
#include "lightmapshaderclass.h" //////////////////////////////////////////////////////////////////////////////// // Class name: GraphicsClass //////////////////////////////////////////////////////////////////////////////// class GraphicsClass { public: GraphicsClass(); GraphicsClass(const GraphicsClass&); ~GraphicsClass(); bool Initialize(int, int, HWND); void Shutdown(); bool Frame(); bool Render(); private: D3DClass* m_D3D; CameraClass* m_Camera; ModelClass* m_Model;
我们有一个新的 LightMapShaderClass 对象变量。
LightMapShaderClass* m_LightMapShader; }; #endif
我只介绍一下与上一个教程的不同之处。
//////////////////////////////////////////////////////////////////////////////// // Filename: graphicsclass.cpp //////////////////////////////////////////////////////////////////////////////// #include "graphicsclass.h" GraphicsClass::GraphicsClass() { m_D3D = 0; m_Camera = 0; m_Model = 0;
新的 LightMapShaderClass 对象在类构造函数中初始化。
m_LightMapShader = 0; } bool GraphicsClass::Initialize(int screenWidth, int screenHeight, HWND hwnd) { bool result; D3DXMATRIX baseViewMatrix; // Create the Direct3D object. m_D3D = new D3DClass; if(!m_D3D) { return false; } // Initialize the Direct3D object. result = m_D3D->Initialize(screenWidth, screenHeight, VSYNC_ENABLED, hwnd, FULL_SCREEN, SCREEN_DEPTH, SCREEN_NEAR); if(!result) { MessageBox(hwnd, L"Could not initialize Direct3D", L"Error", MB_OK); return false; } // Create the camera object. m_Camera = new CameraClass; if(!m_Camera) { return false; } // Initialize a base view matrix with the camera for 2D user interface rendering. m_Camera->SetPosition(0.0f, 0.0f, -1.0f); m_Camera->Render(); m_Camera->GetViewMatrix(baseViewMatrix); // Create the model object. m_Model = new ModelClass; if(!m_Model) { return false; }
ModelClass 对象以新的 light01.dds 光照贴图纹理作为输入,用于此模型的光照贴图着色。
// Initialize the model object. result = m_Model->Initialize(m_D3D->GetDevice(), "../Engine/data/square.txt", L"../Engine/data/stone01.dds", L"../Engine/data/light01.dds"); if(!result) { MessageBox(hwnd, L"Could not initialize the model object.", L"Error", MB_OK); return false; }
新的 LightMapShaderClass 对象在这里创建和初始化。
// Create the light map shader object. m_LightMapShader = new LightMapShaderClass; if(!m_LightMapShader) { return false; } // Initialize the light map shader object. result = m_LightMapShader->Initialize(m_D3D->GetDevice(), hwnd); if(!result) { MessageBox(hwnd, L"Could not initialize the light map shader object.", L"Error", MB_OK); return false; } return true; } void GraphicsClass::Shutdown() {
LightMapShaderClass 对象在 Shutdown 函数中释放。
// Release the light map shader object. if(m_LightMapShader) { m_LightMapShader->Shutdown(); delete m_LightMapShader; m_LightMapShader = 0; } // Release the model object. if(m_Model) { m_Model->Shutdown(); delete m_Model; m_Model = 0; } // Release the camera object. if(m_Camera) { delete m_Camera; m_Camera = 0; } // Release the D3D object. if(m_D3D) { m_D3D->Shutdown(); delete m_D3D; m_D3D = 0; } return; } bool GraphicsClass::Render() { D3DXMATRIX worldMatrix, viewMatrix, projectionMatrix, orthoMatrix; // Clear the buffers to begin the scene. m_D3D->BeginScene(0.0f, 0.0f, 0.0f, 1.0f); // Generate the view matrix based on the camera's position. m_Camera->Render(); // Get the world, view, projection, and ortho matrices from the camera and D3D objects. m_D3D->GetWorldMatrix(worldMatrix); m_Camera->GetViewMatrix(viewMatrix); m_D3D->GetProjectionMatrix(projectionMatrix); m_D3D->GetOrthoMatrix(orthoMatrix); // Put the model vertex and index buffers on the graphics pipeline to prepare them for drawing. m_Model->Render(m_D3D->GetDeviceContext());
模型在这里使用光照贴图着色器渲染。
// Render the model using the light map shader. m_LightMapShader->Render(m_D3D->GetDeviceContext(), m_Model->GetIndexCount(), worldMatrix, viewMatrix, projectionMatrix, m_Model->GetTextureArray()); // Present the rendered scene to the screen. m_D3D->EndScene(); return true; }
本教程与上一个混合教程没有太大区别,但它产生了非常有用的效果,在处理速度方面非常高效。
1. 重新编译代码,确保屏幕上显示光照贴图纹理。
2. 创建一些自己的光照贴图并尝试一下。
3. 将像素着色器中最终输出像素的值乘以 2.0。注意,通过这样做,你可以创建更强和更柔和的照明效果。